Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Comparing negative impacts of Prunus serotina, Quercus rubra and Robinia pseudoacacia on native forest ecosystems.

Abstract

The introduction of invasive alien plant species (IAPS) can modify plant-soil feedback, resulting in an alteration of the abiotic and biotic characteristics of ecosystems. Prunus serotina, Quercus rubra and Robinia pseudoacacia are IAPS of European temperate forests, where they can become dominant and suppress the native biodiversity. Assuming that the establishment of these invasive species may alter native forest ecosystems, this study comparatively assessed their impact on ecosystems. This study further investigated plant communities in 12 forest stands, dominated by the three IAPS and native trees, Quercus robur and Carpinus betulus (three plots per forest type), in Northern Italy, and collected soil samples. The relationships between the invasion of the three IAPS and modifications of humus forms, soil chemical properties, soil biological quality, bacterial activity and plant community structure and diversity (α-, β-, and γ-diversity) were assessed using one-way ANOVA and redundancy analyses (RDA). Our comparative study demonstrated that invaded forests often had unique plant and/or soil properties, relative to native forests, and the degree of dissimilarity depended on the invasive species. Particularly, Q. rubra is related to major negative impacts on soil organic horizons and low/modified levels of microarthropod and plant biodiversity. R. pseudoacacia is associated with an altered base content of soil and, in turn, with positive feedback to the soil biological quality (QBS-ar) and plant diversity, but with a high cover compared with other alien plant species. P. serotina is associated with intermediate impacts and exhibits a plant species assemblage that is more similar to those of native forest stands. Our work suggests impact-based management decisions for the three investigated IAPS, since their effects on the diversity and composition of resident ecosystems are very different.