Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Fire regimes and shifting community patterns: a case study and method for species with complex fire requirements.

Abstract

Anthropogenic alteration of fire regimes is implicated in the extinction or decline of species across the globe. Active management of fire regimes using specified guidelines can help sustain diversity and counter this loss. However, some species occur across multiple communities with differing fire regime requirements or may exploit the dynamics of associated ecotones. These complexities are not easily understood via a simple consideration of life history traits or unravelled by a simple experimental framework. Population modelling, however, may provide valuable insights in these instances, but to date this remains unexplored. A population model based on detailed demographic, habitat and fire regime data was developed for the species Prostanthera askania. The species occurs across rainforest/eucalypt forest ecotones subject to long-term alteration, fragmentation and invasion by exotic species. Modelling revealed that current recommended fire guidelines will not sustain this species under these novel conditions. Fire regimes that minimised extinction risk in some scenarios had double or five times the fire frequencies of recommended regimes. Managing fire was also more important in specific habitat (gully habitat rather than on slopes or ridges). Currently applied management actions for Prostanthera askania do not include any fire management and the regimes that apply to most habitat in which the species occurs (no fire or fire at up to 50-year intervals in gully habitat) is not optimal for the species. Management will be substantially more effective if specific fire treatments revealed by this study are employed (e.g. fire intervals of 20-30 years in gully habitat). The study demonstrates that a conceptualisation and consideration of communities as both temporally and spatially dynamic can substantially contribute to better fire management outcomes. The approach used herein can be readily adapted and applied to a plethora of species via a range of software packages and codes.