Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Index of host habitat preference explored by movement-based simulations and trap captures.

Abstract

Animal species likely have different strengths of host habitat preference (HHP) that might be characterized by a standardized index ranging from 0 (no preference) to 1 (maximum preference). We hypothesized that in some species, HHP may result from individuals dispersing out of the host habitat having a probability of turning back at the boundary, or after entering host habitat by reducing speed or increasing size of turning angles. Computer simulations of individuals moving between various sized patches of host and nonhost habitat were conducted based on these three behaviours hypothesized to affect HHP. In the rebounding model, simulations resulted in equilibria of animal numbers inside and outside of host habitat that depend on sizes of these areas, initial number and the rebounding probability. Curvilinear regression of simulation results suggested an equation that predicted numbers in the host habitat and was solved for rebounding probability. A modified equation that sampled population densities (e.g., insect pheromone trap catches) inside and outside host habitat areas gave the rebounding probability, an index of HHP, without requiring the sizes of the areas. Simulations with traps and moving animals verified that the modified equation could predict the index correctly. The modified equation also estimates an index of HHP from sampled densities due to speed reductions and a combination of this and rebounding. Changes in angular turning size upon entering host habitat, however, did not affect habitat preference. Using pheromone trap captures, we found that the lesser date moth Batrachedra amydraula has a HHP for date Phoenix dactylifera plantations of 0.96. Host habitat preference indexes also were calculated from sampled insect densities reported in the literature. The new index of HHP is useful to characterize habitat patches of many organisms and aid understanding of animal spatial distributions and speciation processes. In addition, the index can be applied in studies of invasive species, trap crops of pest insects and conservation management.