Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Invasive weeds in urban riparian zones: the influence of catchment imperviousness and soil chemistry across an urbanization gradient.

Abstract

The riparian zones of urban waterways are frequently degraded by weed invasions. This study examined the effects of different levels of catchment imperviousness, as a surrogate for the extent and intensity of urbanisation, on invasive weeds and soil physical and chemical attributes. The study was conducted adjacent to waterways in the partly urbanised Georges River catchment in south western Sydney. Vegetation and soil sampling was undertaken in the riparian zone of 10 freshwater streams in non-urban (low imperviousness), peri-urban (moderate imperviousness) and urban (high imperviousness) sub-catchments. Soil samples were tested for a suite of physical and chemical properties (moisture, bulk density, organic matter, pH, salinity, phosphorus, potassium and calcium). Increased levels of sub-catchment imperviousness and urbanisation were associated with higher weed coverage and elevated soil geochemical attributes. One of the most interesting findings in this study was that urban soil calcium concentrations were over 2000 times greater than soils collected from non-urban catchments. The BIOENV procedure identified soil pH, salinity, calcium, organic matter, moisture and catchment imperviousness to be important environmental factors associated with variation in riparian vegetation. The single factor of soil pH was most highly correlated with variations in riparian vegetation. Soil pH was approximately 1.5 units higher in urban compared to non-urban riparian soils. We speculate that there is a link between urban concrete materials, urban soil and water contaminants and riparian weed invasion. We also recommend further study into the contribution of urban concrete materials on the geochemical contamination of riparian soils.