Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Toxicity-associated changes in the invasive cyanobacterium Cylindrospermopsis raciborskii in response to nitrogen fluctuations.

Abstract

The cyanobacterium Cylindrospermopsis raciborskii is of particular concern due to its ability to fix nitrogen (N), sporadic bloom, potential toxicity and apparent invasiveness. However, the toxicity associated behavior and response of toxic C. raciborskii under N fluctuations in water have been poorly investigated. The present study initiated based on the field survey in which Cylindrospermopsis species was found to have a high fitness under nitrate concentrations fluctuating from 0.02 mg L-1 to 2.90 mg L-1 in Chinese freshwater lakes. Examination on the role of short-term N fluctuations was conducted in two C. raciborskii strains which were exposed to a range of N concentrations supplied in two patterns, namely one-time pattern and ten-time pattern in which the equal amount of N was divided into ten-time accretions. The results showed the growth of both strains were not vulnerable to the transient nutrient fluctuations. The toxic strain showed considerable toxicological flexibility with the highest yield of cylindrospermopsin (CYN) obtained in the absence of N and the lowest in full medium. Generally, larger amounts of total CYN were observed at lower N levels, indicating that N deficiency promoted the intracellular accumulation and simultaneously restrained the extracellular release of CYN. Furthermore, CYN production was significantly different in two N supply patterns. The maximum quotas of intracellular and extracellular CYN in one-time pattern were respectively 2.79-3.53 and 3.94-7.20 times higher compared to the ten-time pattern. To our knowledge, our results are the first evidence of toxicity variations of C. raciborskii to the impermanent N fluctuations, shedding new light on its toxicological plasticity.