Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

The invasion biology of the invasive earwig, Forficula auricularia in Australasian ecosystems.

Abstract

The European earwig, Forficula auricularia, is a cosmopolitan insect endemic to Europe, West Asia and North Africa, which has invaded many temperate regions of the world including Australia and New Zealand. F. auricularia has been shown to be a complex of morphologically identical, reproductively isolated lineages that possess two distinct clades of mitochondrial DNA. Entomological collection data, historical literature and further field collections were used to develop a greater understanding of Australian F. auricularia's invasion biology and its current distribution. Genetic analysis of F. auricularia collected from Australia and New Zealand using two mitochondrial genes (COI and a fragment overlapping parts of the COI-COII genes) was also undertaken. To identify the possible source populations of the Australasian invasion these sequences were compared to those from 16 locations within Britain and continental Europe. All Australasian populations were shown to be of the clade B lineage. Tasmanian and New Zealand populations consist of a single subclade comprised of only 4 and 1 haplotypes respectively. The Australian mainland populations also contained a second subclade consisting of up to 11 haplotypes indicating that multiple introductions possibly occurred on the Australian mainland. Comparison of mitochondrial genomes from Australasian and European populations showed the Australian mainland subclade to be most closely related to Portuguese haplotypes, and the Tasmanian and New Zealand clade closely related to those in Brittany, France. No European haplotypes perfectly matched the Australasian sequences. Therefore, the original source populations are still to be identified with harbours on the Iberian Peninsula's western coast and those on the English Channel likely candidate areas.