Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Identification of three prophenoloxidase-activating factors (PPAFs) from an invasive beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) and their roles in the prophenoloxidase activation.

Abstract

A typical characteristic of the insect innate immune system is the activation of the serine protease cascade in the hemolymph. As being the terminal component of the extracellular serine protease cascade in the prophenoloxidase (proPO) activating system, proPOactivating factors (PPAFs) activated by the upstream cascade may generate active phenoloxidase, which then induces downstream melanization. In the present study, we reported three PPAFs from the nipa palm hispid beetle Octodonta nipae (Maulik) (designated as OnPPAF1, OnPPAF2, OnPPAF3). All three OnPPAFs contained a single clip domain at the amino-terminus followed by a trypsin-like serine protease domain at the carboxyl-terminus, except the Ser in the active sites of OnPPAF2 and OnPPAF3 was substituted with Gly. Transcript expression analysis revealed that all OnPPAFs were highly expressed in hemolymph, whereas OnPPAF2 showed an extremely low mRNA abundance compared with that of OnPPAF1 and OnPPAF3, and that the abundance of all three OnPPAFs was dramatically increased upon bacterial challenge. Knockdown of OnPPAF1 or OnPPAF3 resulted in a reduction of hemolymph phenoloxidase activity and an inhibition of hemolymph melanization, whereas the knockdown of OnPPAF2 did not affect the proPO cascade. Our work thus implies that the three OnPPAFs may have different functions and regulation during immune responses in O. nipae.