Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Detection of equine herpesvirus (EHV) -1, -2, -4 and -5 in Ethiopian equids with and without respiratory problems and genetic characterization of EHV-2 and EHV-5 strains.

Abstract

Infections with equine herpesviruses (EHVs) are widespread in equine populations worldwide. Whereas both EHV-1 and EHV-4 produce well-documented respiratory syndromes in equids, the contribution of EHV-2 and EHV-5 to disease of the respiratory tract is still enigmatic. This study describes the detection and genetic characterization of EHVs from equids with and without clinical respiratory disease. Virus-specific PCRs were used to detect EHV-1, -2, -4 and -5. From the total of 160 equids with respiratory disease, EHV-5 was detected at the highest prevalence (23.1%), followed by EHV-2 (20.0%), EHV-4 (8.1%) and EHV-1 (7.5%). Concurrent infections with EHV-2 and EHV-5 were recorded from nine (5.2%) diseased horses. Of the total of 111 clinically healthy equids, EHV-1 and EHV-4 were never detected whereas EHV-2 and EHV-5 were found in 8 (7.2%) and 18 (16.2%) horses, respectively. A significantly higher proportion of EHV-2-infected equids was observed in the respiratory disease group (32/160, 20.0%; P=0.005) compared to those without disease (8/111; 7.2%). EHV-2-positive equids were three times more likely to display clinical signs of respiratory disease than EHV-2-negative equids (OR 3.22, 95% CI: 1.42-7.28). For EHV-5, the observed difference was not statistically significant (P=0.166). The phylogenetic analysis of the gB gene revealed that the Ethiopian EHV-2 and EHV-5 strains had a remarkable genetic diversity, with a nucleotide sequence identity among each other that ranged from 94.0 to 99.4% and 95.1 to 100%, respectively. Moreover, the nucleotide sequence identity of EHV-2 and EHV-5 with isolates from other countries acquired from GenBank ranged from 92.9 to 99.1% and 95.1 to 99.5%, respectively. Our results suggest that besides EHV-1 and EHV-4, EHV-2 is likely to be an important contributor either to induce or predispose equids to respiratory disease. However, more work is needed to better understand the contribution of EHV-2 in the establishment of respiratory disease.