Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

SfP53 and filamentous actin (F-actin) are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Spodoptera frugiperda 9 cells.

Abstract

Objectives: To analyze the anti-insect mechanism of viral pesticide AcMNPV-BmK IT(P10/PH) in the host Spodoptera frugiperda 9 (Sf9) cells. Results: Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)-mediated expression of BmK IT, regulated by P10 protein promoter (P10) and polyhedrosis promoter (PH), promoted the replication of progeny virus in host Sf9 cells. AcMNPV-BmK IT(P10) could accelerate the budding process (or speed) of budded virus (BV) in Sf9 cells. The impact of AcMNPV-BmK IT(P10) on the nuclear polymerization of filamentous actin (F-actin) participated in regulating the accelerated budding process. Unexpectedly, both AcMNPV-BmK IT(P10) and AcMNPV-BmK IT(PH) delayed the nuclear polymerization of F-actin and promoted the clearance of F-actin in the nucleus. SfP53, an important apoptosis factor, was involved in the regulation of AcMNPV-BmK IT(P10/PH) in Sf9 cells. AcMNPV-BmK IT(P10/PH) could also delay and promote the nuclear recruitment of SfP53 after 27 h post infection (h p.i.). Conclusion: SfP53 and F-actin are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Sf9 cells, which provides the experimental basis for the development of recombinant baculovirus biopesticides.