Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Quantifying the ecological impact of invasive tunicates to shallow coastal water systems.

Abstract

Coastal ponds, due to their proximity to human activity, may be particularly vulnerable to invasions by non-native species. A number of invasive tunicate species have been documented in several of the coastal ponds on the island of Martha's Vineyard, Massachusetts. Tunicates are voracious filter feeders, thus our study attempted to examine the impact of their feeding on the normal food web in a coastal pond. In 2012 and 2013, we sampled Stonewall (high tunicate abundance) and Lagoon Ponds (tunicates absent) on Martha's Vineyard. We used quadrat sampling to quantify tunicate abundance, eelgrass shoot density and eelgrass canopy height. Fish, invertebrates and aquatic vegetation were collected via beach seine, minnow trap, crab traps or by hand. Water samples were run through a filter to collect phytoplankton. These biota samples were processed for carbon and nitrogen isotopic analysis. Temperature loggers were deployed in both ponds to collect water temperature. Detailed bathymetric readings were taken to generate an estimate of the volume of each pond. Tunicate filtration rates from published scientific literature, our volume estimate of Stonewall Pond and our measured tunicate abundance were used in a model to estimate the time needed by tunicates to filter a volume of water equal to Stonewall Pond. That time varied from less than an hour to over 17 hours. Isotopic analysis showed that tunicates were feeding on similar resources as the commercial shellfish species. There was broad overlap in the isotopic signatures between the biota from both ponds, suggesting that tunicates were not having a measurable impact to the food web. Tunicates exhibit significant seasonal abundance changes, with the peak occurring late summer into the early fall. The limited duration of this peak may not be sufficient to be reflected in the isotopic signature of resident biota. As water temperature continues to increase with climate change, the current assemblage of tunicates in these shallow water systems on Martha's Vineyard will likely change in response.