Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Towards minimizing transport of aquatic nuisance species in ballast water: do organisms in different size classes respond uniformly to biocidal treatment?

Abstract

To reduce the transport and delivery of aquatic nuisance species in ships' ballast water and comply with standards for the number of living organisms that may be discharged, biocidal agents and processes, such as chemical dosing, have been repurposed to treat ballast water. We evaluated whether marine planktonic organisms-the typical targets of these biocides-respond in unison to simulated treatment. Organisms were concentrated from seawater, which was amended with dissolved and particulate matter and cultured microalgae, and then treated by chlorination, ultraviolet radiation, or deoxygenation. Living organisms in three size classes (≥50, ≥10 and <50, and <10 µm [represented by culturable, heterotrophic bacteria]) were counted prior to and periodically after treatment. Regardless of whether the differences in concentrations between the control and treatments were significant or insignificant, in general, organisms across the size classes reacted comparably to treatments, with some exceptions in the <10 µm size class. The parallel responses of organisms to treatment-if shown to generalize to other water conditions, assemblages of organisms, and scales of treatment-may justify using a single size class to predict the responses of organisms across the broad size spectra. Notably, because most ballast water management systems employ a filtration step to remove organisms ≥50 µm, if organisms in the ≥10 and <50 µm size class were assessed to determine a vessel's compliance with the discharge standard, it would be imperative that any filters would be evaluated to ensure they were functioning properly and removed organisms as designed.