Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Evaluating the piscicide rotenone as an option for eradication of invasive Mozambique tilapia in a Hawaiian brackish-water wetland complex.

Abstract

Mozambique tilapia Oreochromis mossambicus were recently discovered in 'Aimakapā Fishpond, a 12-hectare brackish-water wetland complex in Kaloko-Honokōhau National Historical Park, on the Island of Hawai'i. As a possible eradication method, we evaluated rotenone, a natural piscicide used in fish management and the active ingredient in plants traditionally used by indigenous Hawaiians for capturing fish. To assess rotenone's efficacy in killing tilapia and effects on non-target species, laboratory toxicity tests involved exposing organisms to various concentrations of liquid CFT Legumine (5% rotenone) in static trials of 48-h to 72-h duration. Test organisms included: Mozambique tilapia, non-native guppy Poecilia reticulata, the non-native odonate Rambur's forktail Ischnura ramburii, native feeble shrimp Palaemon debilis, and native 'ōpae'ula shrimp Halocaridina rubra. All organisms and water used in tests were obtained from 'Aimakapā (12.6-12.7 ppt salinity), or, for H. rubra, an anchialine pool (15.0-15.2 ppt salinity). Survival analyses indicated CFT Legumine concentrations ≥3 ppm (>0.15 mg/L rotenone) achieved 100% mortality of tilapia and 93% of guppies within 24 h, with most tilapia killed by 6 h and most guppies by 2 h. Little or no mortality was observed among invertebrate exposed to 1 to 5 mg/L CFT Legumine: 0% mortality for 'ōpae'ula shrimp, 4% for feeble shrimp; and 16% for odonate larvae. The 48 h LC50 values for Mozambique tilapia and guppy were 0.06 and 0.11 mg/L rotenone, respectively. Results demonstrate rotenone's potential for non-native fish eradication in brackish-water habitats, with benefit of low mortality to certain macro-invertebrates. High rotenone tolerance displayed by 'ōpae'ula shrimp is noteworthy. Invasive fish are common in anchialine pools, threatening existence of shrimp and other invertebrate fauna. Although rotenone's effects on freshwater organisms have been well studied, our research represents one of only a few controlled laboratory experiments quantitatively assessing rotenone tolerance of brackish or marine fauna.