Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) morphology, growth, and seed production in Georgia.

Abstract

Herbicide-resistant Palmer amaranth has become the most economically detrimental weed of cotton in the southeast United States. With the continual marginalization of potential herbicide tools, research has expanded to include alternative means of affecting future Palmer amaranth populations by altering safe sites and reducing inputs to the seedbank population. The influence of delayed Palmer amaranth establishment on seed production potential has not been investigated in the southeast United States. Studies were conducted to evaluate the influence of time of Palmer amaranth establishment on morphology, growth, and seed production. The experiment was a factorial, with five levels of Palmer amaranth transplanting (0 to 12 wk after cotton planting) and two levels of crop type (cotton and noncrop). In the absence of crop competition, the first cohort of Palmer amaranth produced 446,000 seeds per plant. This potential seed production was reduced 50% when Palmer amaranth plants were established nearly 6 wk later. In contrast, the first Palmer amaranth cohort growing in competition with cotton produced 312,000 seeds, 30% less than was produced in the absence of competition. Interference from cotton shifted time to 50% seed production to nearly 4 wk earlier in the growing season, relative to plants without crop competition. Delayed establishment of Palmer amaranth simulates premature loss of herbicide efficacy and alters the competitive balance between cotton and Palmer amaranth. Although the planting time that resulted in 50% reduction in Palmer amaranth plant height at the end of the season was not affected by the presence of cotton, 50% reduction in plant width and biomass occurred within the first 3.8 wk of the growing season when growing with cotton, more than 4 wk earlier than Palmer amaranth growing without a crop. This suggests that early season weed control programs will have a large effect on Palmer amaranth potential growth and seed production, as well as crop yield. To implement soil seedbank reduction strategies effectively, information on mechanisms that regulate Palmer amaranth persistence in the soil seedbank is needed.