Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Context-specific enhanced invasiveness of Raphanus crop-wild hybrids: a test for associations between greater fecundity and population growth.

Abstract

Evolution by crop-wild hybridization may create plant lineages with greater population growth rates, dispersal, and persistence than weedy progenitors, depending upon plant density. We asked: (1) how does hybridization affect demography and population growth rate (lambda, λ) and (2) how does density affect demography and λ? Over 1 yr, we followed wild radish, Raphanus raphanistrum and crop-wild hybrid, Raphanus sativus × R. raphanistrum, plants grown in 18 experimental sub-populations (originally derived from three wild and three hybrid populations) to assess contributions of germination, survival, and seed production to λ. We explored genotypic differences in demographic characteristics of low- and high-density populations (from populations grown at unmanipulated densities for three generations), using a LTRE. Hybrid populations had greater λs than weedy progenitors when grown in low (but not high) densities. Seed production was more influential on λ than germination or survival, and seed mortality was least influential. Our results indicate weedy Raphanus populations may be best controlled by limiting seed production, rather than killing plants outright or preventing seeds from germinating. Furthermore, relative invasiveness of genotypes is density-dependent, low-density conditions improving potential invasiveness of hybrid populations. We emphasize that assessing invasive potential of a plant will be more successful if one uses a comprehensive demographic approach accounting for a weed's entire life history.