Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Cold tolerance of the invasive Carcinus maenas in the east Pacific: molecular mechanisms and implications for range expansion in a changing climate.

Abstract

Physiological studies have long been utilized to understand the role of environmental temperature in the distribution of native organisms within marine communities. For the invasive crab Carcinus maenas, temperature has been implicated as the main predictor of establishment success across temperate regions. Therefore, we determined whether the lower temperature tolerances of this non-native crab would restrict it from spreading farther poleward from a relatively new recipient environment. Cold tolerance capacity was determined in the laboratory by holding crabs sampled from Vancouver Island, British Columbia (BC) - near the present northern limit for the northeast Pacific metapopulation to an overwintering thermal profile generated from Sitka, Alaska, USA. These crabs were physiologically capable of overwintering north of their present range boundary. The cellular response to cold stress was investigated using two functional categories of the cellular stress response. We measured cyclin D1, a cell-cycle regulator, and Hsp70, a protein chaperone, after laboratory acclimation and acute cold stress on two populations of C. maenas from the west coast of North America that have disparate thermal histories (crabs sampled from CA or BC). We found site-specific differential expression of cyclin D1 after cold acclimation and cold shock, perhaps affecting invasion capacity in this species. Determining what physiological mechanisms are in place with respect to thermal tolerance and preference can give insight into what makes an invasive organism successful and aid in predicting probable distribution of such species within a new environment.