Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Reproductive strategy of the invasive Oxalis pes-caprae: distribution patterns of floral morphs, ploidy levels and sexual reproduction.

Abstract

Oxalis pes-caprae, a tristylous flowering plant native to South Africa, is described in the western Mediterranean basin as an asexual - only 5× short-styled morph (5× S-morph) invasive weed losing all mating partners after introduction. The objective of this study was to reassess the patterns of floral morph and cytotype distribution and the sexual reproduction ability in this invaded range. For that, floral morph and cytotype composition were evaluated in 39 populations of O. pes-caprae in a methodical sampling. The reproductive success of natural populations was assessed as fruit and seed production and seed germination for all floral morphs and cytotypes detected. Self- and morph-incompatibility were also studied with controlled hand pollinations. A remarkable diversity in floral morph and cytotype composition was observed. Furthermore, we observed successful sexual reproduction in several localities across the surveyed area. The S-morph is still dominant in this invaded area, and although it was mostly 5×, an additional cytotype (4×) was also recorded. Records of both a mid-styled morph (M-morph) and an area with trimorphic populations of this species are reported here for the first time in the invasive range of the Mediterranean basin. The long-styled morph appears to occur randomly across the surveyed area, while the M-morph is concentrated mainly in Estremadura province (Portugal), where a breakdown in the incompatibility system was observed. These distribution patterns may result from events of sexual reproduction after incompatibility breakdown and/or from multiple introduction events from the native area. The ability to reproduce sexually, undetected so far, may have important impacts in the population dynamics and major consequences for the adaptation and selection potential of O. pes-caprae in this invaded area.