Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the River Rhine.

Abstract

Non-indigenous species that become invasive are one of the main drivers of biodiversity loss worldwide. In various freshwater systems in Europe, populations of native amphipods and fish are progressively displaced by highly adaptive non-indigenous species that can perform explosive range extensions. A total of 40 Ponto-Caspian round gobies Neogobius melanostomus from the Rhine River near Düsseldorf, North Rhine-Westphalia, Germany, were examined for metazoan parasites and feeding ecology. Three metazoan parasite species were found: two Nematoda and one Acanthocephala. The two Nematoda, Raphidascaris acus and Paracuaria adunca, had a low prevalence of 2.5%. The Acanthocephala, Pomphorhynchus tereticollis, was the predominant parasite species, reaching a level of 90.0% prevalence in the larval stage, correlated with fish size. In addition, four invasive amphipod species, Corophium curvispinum (435 specimens), Dikerogammarus villosus (5,454), Echinogammarus trichiatus (2,695) and Orchestia cavimana (1,448) were trapped at the sampling site. Only D. villosus was infected with P. tereticollis at a prevalence of 0.04%. The invasive goby N. melanostomus mainly preys on these non-indigenous amphipods, and may have replaced native amphipods in the transmission of P. tereticollis into the vertebrate paratenic host. This study gives insight into a potential parasite-host system that consists mainly of invasive species, such as the Ponto-Caspian fish and amphipods in the Rhine. We discuss prospective distribution and migration pathways of non-indigenous vertebrate (round goby) and invertebrates (amphipods) under special consideration of parasite dispersal.