Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Degradation of sexual reproduction in Veronica filiformis after introduction to Europe.

Abstract

Background: Baker's law predicts that self-incompatible plant species are generally poor colonizers because their mating system requires a high diversity of genetically differentiated individuals and thus self-compatibility should develop after long-distance dispersal. However, cases like the introduction of the self-incompatible Veronica filiformis (Plantaginaceae) to Europe constitute an often overlooked alternative to this rule. This species was introduced from subalpine areas of the Pontic-Caucasian Mountains and colonized many parts of Central and Western Europe in the last century, apparently without producing seeds. To investigate the consequences of the absence of sexual reproduction in this obligate outcrosser since its introduction, AFLP fingerprints, flower morphology, pollen and ovule production and seed vitality were studied in introduced and native populations. Results: Interpopulation crossings of 19 introduced German populations performed in the greenhouse demonstrated that introduced populations are often unable to reproduce sexually. These results were similar to intrapopulation crossings, but this depended on the populations used for crossings. Results from AFLP fingerprinting confirmed a lack of genetic diversity in the area of introduction, which is best explained by the dispersal of clones. Flower morphology revealed the frequent presence of mutations affecting the androecium of the flower and decreasing pollen production in introduced populations. The seeds produced in our experiments were smaller, had a lower germination rate and had lower viability than seeds from the native area. Conclusions: Taken together, our results demonstrate that V. filiformis was able to spread by vegetative means in the absence of sexual reproduction. This came at the cost of an accumulation of phenotypically observable mutations in reproductive characters, i.e. Muller's ratchet.