Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Optimizing ethanol-baited traps for monitoring damaging ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in ornamental nurseries.

Abstract

The exotic ambrosia beetles Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae) are serious pests in ornamental tree nurseries. To optimize bottle-traps as a monitoring system for X. crassiusculus and X. germanus in nurseries, we tested whether increasing the rate of commercial ethanol lures improved captures or early detection of these species. Experiments were conducted in Ohio (2008 and 2009) and Virginia (2008), two states that have experienced significant damage from X. crassiusculus, X. germanus, or both. There were four treatments: no-lure (unbaited control), 1-ethanol lure, 2-ethanol lures and 1+1-ethanol lures (one lure in the trap and one suspended 0.5 m above the trap). Captures of X. crassiusculus and X. germanus were higher in all ethanol treatments than unbaited controls, and were generally higher in treatments with two lures versus one. There was no difference in beetle captures between the 2-lure and 1+1-lure treatments. First detection of X. crassiusculus and X. germanus occurred more consistently in the treatments with two lures than one lure. Xyleborinus saxesenii (Ratzeburg), Anisandrus sayi Hopkins, Hypothenemus dissimilis Zimmermann, and Hypothenemus eruditus Westwood were also more attracted to traps baited with ethanol than unbaited controls. X. saxesenii was captured in higher numbers in the treatments with two lures than one in Virginia but not in Ohio. There was no difference in captures of the other species among ethanol treatments. The current research shows that ethanol release rates influence sensitivity of traps for detecting emergence of overwintered ambrosia beetles.