Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Chemical-environment interactions affecting the risk of impacts on aquatic organisms: a review with a Canadian perspective - interactions affecting vulnerability.

Abstract

Environmental change can increase the vulnerability of aquatic species to toxic chemicals by challenging an organism's aptitude to respond to chemicals or to repair toxic injury or by modifying animal behaviours like migration or predation. On the other hand, xenobiotics may affect the capacity of aquatic species to adapt to environmental challenges that come with change (e.g., pathogens, temperature). Across Canada we have identified a number of circumstances where chemicals and environmental variability have likely worked together to affect vulnerability of aquatic organisms. For example in the Maritimes, exposure to municipal wastewater or bleached kraft pulp mill effluent altered immune function in bivalves and increased their risk of developing haemocytic neoplasia, a disease known to cause high mortality. Northwest Atlantic cod stocks have experienced large-scale changes in environment and exhibit marked seasonal cycles in energy reserves. The risk associated with subsequent redistribution of persistent chemicals in the body together with nutritional deficiency is presently under evaluation since it could affect the recovery of these endangered stocks. In the Great Lakes, the introduction of an invasive fish species, the alewife, modified the diet of salmonids, which led to a deficiency of the vitamin thiamine in eggs causing early mortality. Contaminants may interact with thiamine deficiency and thus critically impair recruitment of salmonids. Viewing the risks presented by toxic chemicals from the point of view of species vulnerability, offers managers opportunities to mitigate such risks, for example, through habitat, ocean and fisheries management. Further research is needed to develop biomarkers of vulnerability, identify most vulnerable life stages and populations, to understand the interactions between global environmental changes, nutritional status, pathogens and toxic chemicals, and to develop integrated approaches to manage vulnerability of aquatic ecosystems to toxic chemicals.