Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

White sweetclover (Melilotus albus) and narrowleaf hawksbeard (Crepis tectorum) seed germination after passing through moose.

Abstract

White sweetclover and narrowleaf hawksbeard are nonindigenous invasive plant species in Alaska that are rapidly spreading, including into areas that are otherwise free of nonindigenous plants. There has been concern that native moose could be dispersing germinable seed from these plants after ingestion. To address this concern, a study was conducted involving tame moose at the University of Alaska Fairbanks Agriculture and Forestry Experiment Station, Matanuska Experiment Farm, Palmer, AK. Objectives were to determine if seeds from these two plant species could survive mastication and digestive passage through moose, whether this passage impacted seed germination, and whether seed passage rates were the same as similar sized Cr-mordanted fiber. In this study, narrowleaf hawksbeard seed rarely survived mastication and digestion with only five seedlings recovered from 42,000 germinable seed fed to the moose. About 16% of germinable white sweetclover seed (3,595 of 22,000) fed to the moose produced seedlings. Most of the sweetclover seedlings came from feces produced 2 and 3 d after feeding. In two moose, sweetclover seedlings were grown from fecal material that was passed 11 d after feeding, raising the possibility that seeds could be transported long distances after ingestion. Cr-mordanted fiber passage did not closely follow seedling producing seed, possibly because time in the rumen might reduce seed germination. Once roadsides in Alaska become infested with white sweetclover, moose can then serve as a transport vector of these weeds into river channels and floodplains, which are distant from roads. This information will impact white sweetclover management programs and alert land managers to the potential for other instances of wildlife-mediated seed dispersal.