Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Deer herbivory alters forest response to canopy decline caused by an exotic insect pest.

Abstract

Hemlock woolly adelgid (HWA; Adelges tsugae) infestations have resulted in the continuing decline of eastern hemlock (Tsuga canadensis) throughout much of the eastern United States. While the initial impacts of HWA infestations have been documented, our understanding of forest response to this disturbance remains incomplete. HWA infestation is not occurring in isolation but within a complex ecological context. The role of potentially important interacting factors, such as elevated levels of white-tailed deer herbivory, is poorly understood. Despite the potential for herbivory to alter forest successional trajectories following a canopy disturbance, little is known about herbivory-disturbance interactions, and herbivory is rarely considered in assessing forest response to a co-occurring disturbance. We used repeated censuses of deer exclosures and paired controls (400 paired plots) to quantify the impact of deer herbivory on tree seedling species abundance in 10 eastern hemlock ravines that span a gradient in HWA-induced canopy decline severity. Use of a maximum likelihood estimation framework and information theoretics allowed us to quantify the strength of evidence for alternative models developed to estimate the impacts of herbivory on tree seedling abundance as a function of varying herbivore density and canopy decline severity. The exclusion of deer herbivory had marked impacts on the abundance of the studied seedling species: Acer rubrum, Acer saccharum, Betula lenta, Nyssa sylvatica, Quercus montana, and Tsuga canadensis. For all six species, the relationship between seedling abundance and deer density was either exponential or saturating. Although the functional form of the response varied among seedling species, the inclusion of both deer density and canopy decline severity measures consistently resulted in models with substantially greater support. Canopy decline resulted in higher proportional herbivory impacts and altered the ranking of herbivory impacts by seedling species. Our results suggest that, by changing species' competitive abilities, white-tailed deer herbivory alters the trajectory of forest response to this exotic insect pest and has the potential to shift future overstory composition.