Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica.

Abstract

We investigated the volatile emissions of Manchurian ash seedlings, Fraxinus mandshurica, in response to feeding by the emerald ash borer, Agrilus planipennis, and to exogenous application of methyl jasmonate (MeJA). Feeding damage by adult A. planipennis and MeJA treatment increased volatile emissions compared to unexposed controls. Although the same compounds were emitted from plants damaged by beetles and treated with MeJA, quantitative differences were found in the amounts of emissions for individual compounds. Adult virgin female A. planipennis were similarly attracted to volatiles from plants damaged by beetles and those treated with MeJA in olfactometer bioassays; males did not respond significantly to the same volatiles. Coupled gas chromatographic-electroantennogram detection (GC-EAD) revealed at least 16 antennally-active compounds from F. mandshurica, including: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, (Z)-3-hexen-1-yl acetate, hexyl acetate, (E)-β-ocimene, linalool, 4,8-dimethyl-1,3,7-nonatriene, and E,E-α-farnesene. Electroantennogram (EAG) dose-response curves using synthetic compounds revealed that females had a stronger EAG response to linalool than males; and male responses were greater to: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, and hexyl acetate. These results suggest that females may use induced volatiles in long-range host finding, while their role for males is unclear. If attraction of females to these volatiles in an olfactometer is upheld by field experiments, host plant volatiles may find practical application in detection and monitoring of A. planipennis populations.