Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins.

Abstract

The interaction of the parasitic plant Orobanche cernua with resistant (Cortés) and susceptible (Agrosur) cultivars of Helianthus annuus was investigated. Using different bioassays to evaluate the early stages of the parasite life cycle (germination, attachment, penetration, and establishment), differences were observed between O. cernua-resistant and O. cernua-susceptible sunflower varieties. Germination of O. cernua seeds in the presence of resistant sunflower roots was approximately half that of germination in the presence of susceptible roots, and germinated seeds displayed enhanced browning symptoms. Parasite radicles or host-tissue around the contact point turned brown after O. cernua attachment to sunflower roots, especially in the resistant varieties. These observations suggested the possible accumulation of toxic compounds as a defence strategy in the resistant sunflower varieties. Sunflower 7-hydroxylated simple coumarins may play a defensive role against O. cernua parasitism by preventing successful germination, penetration and/or connection to the host vascular system. This hypothesis is supported by the following data: (i) coumarins inhibited the in vitro germination of O. cernua seeds induced by the strigol analogue GR24 and caused a browning reaction in germinated seeds and (ii) resistant sunflowers accumulated higher levels of coumarins in roots and excreted greater amounts than susceptible varieties in response to O. cernua infection.