Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Development of ELISA for the detection of Ralstonia solanacearum in tomato: its application in seed health testing.

Abstract

Bacterial wilt caused by Ralstonia solanacearum is worldwide in distribution. It is one of the most destructive bacterial diseases of economically important crops. The serological assays so far developed for the detection of R. solanacearum were able to provide information as to the presence or absence of the pathogen in soil and plant materials. However, they could not discriminate between virulent and avirulent strains of the pathogen and were not specific to strains and races. In the present investigation, virulent bacterial cells (encapsulated with mucin) from tomato seeds were used as antigen and polyclonal antisera were developed in rabbit using a classical immunization protocol. Antisera thus developed were examined for the antibody titre, sensitivity, specificity, rapidity and the efficacy of the antibody in identifying the virulent and avirulent strains of the pathogen and the potential for application of this assay to the screening of infected plant materials and seeds. The results indicate that the anti-tomato R. solanacearum: (i) has a good antibody titre of 1:10,000; (ii) can detect as few as 100 bacterial cells/ml; (iii) is tomato-specific (it reacted with tomato R. solanacearum and not with isolates from chilli (Capsicum) or aubergine); (iv) is reactive to all isolates of R. solanacearum from tomato; (v) is not cross-reactive with non-pseudomonads; (vi) is virulent strain-specific as it recognizes the virulent exopolysaccharide component as an antigenic determinant; (vii) reactivity could be correlated well with the degree of infection in tomato seeds and plant materials. The ELISA developed is sensitive, specific and rapid, therefore suitable for the detection of R. solanacearum isolates from tomato seeds during routine assays.