Recovery in environmental risk assessments at EFSA

EFSA Scientific Committee

Abstract

EFSA performs environmental risk assessments (ERAs) for single potential stressors such as plant protection products, genetically modified organisms and feed additives and for invasive alien species that are harmful for plant health. In this risk assessment domain, the EFSA Scientific Committee recognises the importance of more integrated ERAs considering both the local and landscape scales, as well as the possible co-occurrence of multiple potential stressors that fall under the remit of EFSA, which are important when addressing ecological recovery. In this scientific opinion, the Scientific Committee gathered scientific knowledge on the potential for the recovery of non-target organisms for the further development of ERA. Current EFSA guidance documents and opinions were reviewed on how ecological recovery is addressed in ERA schemes. In addition, this scientific opinion is based on expert knowledge and data retrieved from the literature. Finally, the information presented in this opinion was reviewed by experts from the relevant EFSA Panels, European risk assessment bodies and through an open consultation requesting input from stakeholders. A conceptual framework was developed to address ecological recovery for any assessed products, and invasive alien species that are harmful for plant health. This framework proposes an integrative approach based on well-defined specific protection goals, scientific knowledge derived by means of experimentation, modelling and monitoring, and the selection of focal taxa, communities, processes and landscapes to develop environmental scenarios to allow the assessment of recovery of organisms and ecological processes at relevant spatial and temporal scales.

© European Food Safety Authority, 2016

Keywords: Recovery, resilience, trait-based assessment, semi-field experiments, mechanistic models, field monitoring, focal species and landscapes

Requestor: EFSA

Question number: EFSA-Q-2013-00902

Correspondence: sc.secretariat@efsa.europa.eu

Acknowledgements: The Scientific Committee wishes to thank the members of the working group, chairs* and scientific secretariat# of the working group on the overarching elements of environmental risk assessment (recovery) for drafting this scientific opinion: Franz Bigler, Theo Brock*, Geoff Frampton, Christer Hogstrand, Robert Luttik, Fabrice Martin-Laurent, Christopher John Topping and Wopke Van Der Werf as well as the following EFSA staff members for their support: Angelo Maggiore, Agnes Rortais#, Reinhilde Schoonjans, Franz Streissl, Sara Tramontini, Maria Vittoria Vettori, Sybren Vos and Stefania Volani

ISSN: 1831-4732

© European Food Safety Authority, 2016

Reproduction is authorised provided the source is acknowledged

Reproduction of the images listed below is prohibited and permission must be sought directly from the copyright holder

Figure 7: © Gotze Kalsbeek (left), © The Financial Times Limited 2015 (right)
Summary

At the European Food Safety Authority's (EFSA's) 10th anniversary conference (EFSA, 2012), it became apparent that EFSA’s environmental risk assessment (ERA) schemes have evolved independently in the different areas within its remit (see EFSA, 2011), and that further harmonisation is possible on specific topics. EFSA, therefore, mandated the Scientific Committee (under mandate M-2013-0098) to harmonise EFSA’s ERA schemes with regard to: (1) accounting for biodiversity and ecosystem services to define protection goals for ERA; (2) coverage of endangered species as non-target organisms in single-stressor ERA; and (3) temporal and spatial recovery of non-target organisms for ERAs. The Scientific Committee prepared three separate scientific documents to address the above mentioned issues and this scientific opinion is specifically about (3) temporal and spatial recovery of non-target organisms for ERAs.

In ERA for potential stressors that fall under the remit of EFSA, two protection goal options can be distinguished, viz., the threshold option and the recovery option. The threshold option is the specific protection goal option accepting no (or negligible) population-level effects of exposure to a potential stressor. The recovery option is a specific protection goal option accepting some population-level effects of the potential stressor if ecological recovery takes place within an acceptable time-period.

The EFSA Scientific Committee collected and discussed relevant information from the diverse areas of ERA conducted by EFSA and from the scientific literature. From these discussions, a draft scientific opinion was proposed for public consultation and further adoption by the EFSA Scientific Committee (see Sections 1 and 2). For this assessment, the Scientific Committee proceeded in four steps.

First, the Scientific Committee provided clarification on terminology and concepts that are needed when addressing ecological recovery (see Section 3). In particular, definitions were provided for environmental stressors (i.e. physical, chemical and biological) including pulse and press disturbances (Section 3.1); direct and indirect effects (Section 3.2) and ecological recovery (Section 3.3), comprising actual and potential recovery (Section 3.3.1), recovery at the population level, including internal and external recovery (Section 3.3.2) and resilience at the ecosystem level (Section 3.3.3).

In the above clarifications, an analogy was made between the terms stress, disturbance and perturbation. Also, it was highlighted that multiple environmental stressors can act simultaneously or sequentially. It was concluded that, independently of the type(s) of stressor(s) and duration of stress, the normal operating range (NOR) of individuals, populations, communities and ecosystems becomes disrupted when the environmental stressors exceed a threshold of exposure. The actual recovery is related to the return to this NOR, whereas the potential recovery is defined as the disappearance of the stressor to a level at which it no longer has a direct (toxic) effect on the ecological entity (endpoint) and after which recovery theoretically can start. However, it is challenging to define and measure the NOR. Under field conditions, adverse effects of a stressor can remain unnoticed if the measurement endpoints show a relatively large variability due to effects of natural factors. For indirect effects, it was noted that they may persist longer than direct effects. Furthermore, clarifications were provided on the spatial dynamics operating when a stressor affects populations differentially in space and time, and on population stability, both of which are necessary to understand recovery in a landscape context. To predict recovery of populations of non-target organisms, it is necessary to understand actual population conditions during the period of stress.

Second, the Scientific Committee developed a conceptual framework for the assessment of ecological recovery (Section 4) and gathered knowledge on the key parameters that need to be considered when assessing ecological recovery, in particular (1) the properties of the types of potential stressors of concern that fall under the remit of EFSA (hereafter mentioned potential stressors), i.e. plant protection products (PPPs), genetically modified organisms (GMOs), feed additives and invasive alien species (IAS) that are harmful to plant health (see Section 5, and Appendices A and B); (2) the species and their traits, e.g. related to demography, dispersal and foraging behaviour as well as adaptation to potential stressors (see Section 6); and (3) the specific features of the landscape, i.e. variations in land use, and the types, spatial distribution and connectivity of habitats (see Section 7).

Regarding the properties of the PPPs, GMOs, feed additives and IAS that are harmful to plant health (described in Sections 5.1, 5.2, 5.3 and 5.4, respectively), the Scientific Committee summarised information on their patterns of use, or presence in the case of invasive alien species that are harmful to plant health, in space and time, and on how ecological recovery is tackled for each of these potential stressors in the European Union (EU) legislation. In addition, when available, studies providing data on ecological recovery from exposure to these stressors were described. Finally, impacts on food-web interactions and ecological recovery from these stressors were considered.
Regarding the species traits that may affect ecological recovery, demographic (life-history traits), recolonisation (dispersal traits) and other traits such as foraging behaviour are identified as being of utmost importance (Section 6.1). To illustrate this, some examples of specific traits for focal taxa are described (Section 6.2). The contribution of genetic diversity to recovery is discussed in the context of adaptation to stresses (i.e. in the sense of the selection and genetic inheritance of resistant genotypes) (see Section 6.3). According to the ecological insurance hypothesis, the more genetically diverse a population or community, the better they can withstand potential stressors and can continue providing ecosystem services. It is worth noting that tolerance acquisition resulting from adaptation to stress by different processes may or may be not associated with fitness costs.

Some specific features of agricultural landscapes that may affect ecological recovery (Section 7) are described for the terrestrial and aquatic (i.e. for surface waters that drain and/or irrigate agricultural landscapes) compartments. For the terrestrial compartment (Section 7.1), the spatial distribution and connectivity of treated fields in relation to non-treated areas and the variety of possible land uses in Europe are known to influence the likelihood of concurrent events (i.e. treatments in multiple fields) and therefore the level of exposure to potential stressors in the landscape. These features are all important to consider when selecting the spatial scale at which recovery needs to be assessed. It is also highlighted that these features are important for influencing recovery of organisms that move between in-field and off-field areas (due to the concept of ‘action at a distance’ – i.e. effects of potential stressors may occur outside of the spatial area occupied by these stressors). For the aquatic compartment (Section 7.2), the surface area drained by streams overall is considerably larger than that of ponds, whereas ditches have an intermediate position. In reverse, the retention time of water (i.e. the average length of the time that water spends in the system) increases when going from streams to ditches to ponds. In theory, both the potential of faster recovery following exposure to a potential stressor and the chance to suffer multiple potential stressors will be ranked in the order streams > ditches > ponds. Given the spatial and temporal variability of the European landscapes and also the diversity of the data sets and classifications used to assess and record the landscape structure in Europe, it may be challenging to incorporate such variations when conducting an ERA and assessing ecological recovery (Section 7.3).

Third, taking into account the complexity of ecological systems comprising multiple variables (see Section 8), the Scientific Committee examined the pros and cons of experimental (Section 8.1) and modelling (Section 8.2) approaches to address ecological recovery of the appropriate focal species. Experimental model ecosystem studies (e.g. mesocosm studies) allow replication so that treatment-related effects on, and recovery of, populations, communities and functional endpoints can be evaluated statistically, but are limited in the ecological realism that can be investigated. The minimum detectable difference is suggested as an indicator of the statistical power of a semifield test. For modelling approaches, pros are mostly linked to the ability of models to simulate accurately complex ecological systems where potential stressors may cause multiple outcome changes due to feedback mechanisms. This requires a good understanding of the ecological processes influencing the responses of the assessed entity within its environmental context and a clear definition of the domain of the applicability of the model. Potential disadvantages are the high demand for data and expert skills for both the development and validation of models. However, in prospective risk assessment (e.g. in the case of invasive alien species that are harmful to plant health), neither experimental nor modelling approaches can provide complete information. In such cases, expert opinion elicitation is required. Finally, it is concluded that experimental and modelling approaches need to be linked to appropriately predict recovery processes at the appropriate spatial and temporal scales, whereas field monitoring is required as a reality check.

Fourth, from the information collected and described above, the conceptual framework as given in Section 4 is revisited and discussed, and an integrated approach for addressing ecological recovery for any potential stressor, and IAS that are harmful to plant health, is proposed (see Section 9). Initially, the factors affecting ecological recovery of vulnerable non-target organisms after exposure to different types of potential stressor (Section 9.1) and the relationships between recovery of structural and functional endpoints (Section 9.2) are clarified. Then, the integrated approach is described (Section 9.3) based on the conceptual framework described earlier and information is provided on how to select appropriate focal taxa and/or processes (Section 9.3.1) and appropriate spatial scales (Section 9.3.2) to address exposure, effects and ecological recovery. Finally, clarifications are provided to address specifically ecological resilience for systems impacted by IAS that are harmful to plant health (Section 9.3.3).
This scientific opinion proposes that a systems approach is required to appropriately address ecological recovery in ERA (Section 10). This systems approach allows the integration of the various species, environmental factors, scales and stressor-related responses necessary to address the context-dependency in ecological recovery. Although this may appear to generate an overly complex ERA, the systems approach allows the identification of realistic worst-case combinations of species and environmental scenarios that are necessary. To ensure confidence in this approach it is important that the tools (environmental scenarios and models) are developed as a common resource ensuring transparency and reliability. Thus, the complexity may be reduced to arrive at a manageable day-to-day approach for all parties in regulatory risk assessment. In this context it is important to note that the conservatism of the assessment depends upon the selection of appropriate scenarios and focal biological entities. To reject a systems approach on the basis of complexity would ignore the fact that current decisions based on general approaches may not provide adequate levels of protection (either over- or under-protective). To successfully implement a systems approach the following challenges should be addressed:

- Harmonisation of the procedure for selection of focal taxa and construction of environmental scenarios between different regions and different potential stressors. Common focal taxa need to be identified to reduce the number of models that need to be developed by using the same focal taxa in as many scenarios as possible.
- Make available resources to exploit and further improve databases to select focal taxa, to construct environmental scenarios, and to develop and validate related models representative of different regions in Europe (similar to the procedure adopted by Forum for the co-ordination of pesticide fate models and their Use (FOCUS) exposure scenarios).
- Case studies should be developed as proof of principle.
- Ensure an appropriate linkage to lower tier approaches, monitoring and other EU data collection initiatives already in place (e.g. the Sustainability Use Directive).
- Ensure the maintenance and updating of scenarios and models as new information becomes available and incorporate changes in agricultural systems over time. This needs to be coordinated by a version control group (possibly an EFSA activity).

This scientific opinion makes several conclusions and identifies key challenges for assessing ecological recovery of non-target organisms in ERA of potential stressors (see Section 10), followed by a series of recommendations (see Section 11). In conclusion, the following key challenges were identified:

- define the NOR of ecological entities (bearing in mind that this may vary in time and between different ecosystems);
- identify focal taxa, focal communities and/or focal landscapes;
- assess appropriately action at a distance in cases where the specific protection goal allows the recovery option for in-field habitats, but not for off-field habitats, particularly for mobile non-target organisms;
- predict the role of indirect effects on ecological recovery at the landscape level;
- select appropriate spatial and temporal scales, and key landscape properties for the assessment of impact and recovery of different organism groups and for determining the most optimal management and/or mitigation decisions;
- operationalise links between experimentation, modelling and monitoring, and between prospective and retrospective studies, to consolidate risk assessments;
- parameterise population and food-web models including uncertainty;
- establish predictive food-web and/or ecological interaction models that can be used in prospective ERA;
- develop good mechanistic effect models which are both manageable and realistic enough;
- integrate systems approaches and multiple (potential) stressors into ERA.
Table of Contents

Abstract .. 1
Summary ... 3
1. Introduction .. 10
1.1. Background and Terms of Reference as provided by EFSA ... 10
1.2. Interpretation of the Terms of Reference ... 11
1.2.1. Specific objectives .. 12
1.2.2. Scope ... 12
1.3. Aim of the opinion ... 13
2. Data and methodologies ... 13
2.1. Data .. 13
2.2. Methodologies ... 14
3. Terminology related to ecological recovery .. 14
3.1. Environmental stressors and pulse and press disturbances ... 14
3.2. Direct and indirect effects ... 15
3.3. Ecological recovery and resilience .. 15
3.3.1. Definitions of recovery and normal operation range ... 15
3.3.2. Population resilience and recovery ... 16
3.3.3. Ecosystem resilience and recovery .. 18
4. A conceptual framework to assess ecological recovery from effects of potential stressors in agriculture 19
5. Properties of potential stressors and how ecological recovery is addressed ... 22
5.1. Plant protection products (PPPs) ... 22
5.1.1. Patterns of use in space and time .. 22
5.1.1.1. Timing of application ... 22
5.1.1.2. Number and frequency of applications of the same PPP .. 22
5.1.1.3. Cumulative risks to different PPPs .. 22
5.1.2. Ecological recovery in European guidance documents .. 23
5.1.3. Studies and data on ecological recovery from exposure to plant protection products 23
5.1.3.1. Terrestrial organisms .. 23
5.1.3.2. Aquatic organisms ... 24
5.1.4. Impact on food-web interactions and ecological recovery ... 25
5.1.5. Genetically modified organisms (GMOs) .. 26
5.2.1. Patterns of use in space and time .. 26
5.2.2. Ecological recovery in European legislation ... 27
5.2.3. Impact on food-web interactions and ecological recovery ... 27
5.3. Feed additives .. 28
5.3.1. Patterns of use in space and time .. 28
5.3.2. Ecological recovery in the EU legislation ... 29
5.3.3. Studies and data on ecological recovery from exposure to feed additives 29
5.3.4. Impact on food-web interactions and ecological recovery ... 29
5.4. Invasive alien species (IAS) that are harmful to plant health ... 29
5.4.1. Patterns of presence in space and time .. 29
5.4.2. Ecological recovery in the EU legislation ... 30
5.4.3. Studies and data on ecological recovery from exposure to invasive alien species that are harmful to plant health .. 31
5.4.4. Impact on food-web interactions and ecological recovery ... 31
6. Species traits affecting ecological recovery .. 31
6.1. Generic properties of species traits influencing internal and external recovery 32
6.2. Some examples of specific traits for focal taxa .. 33
6.3. The contribution of genetic diversity to recovery .. 35
7. Specific features of agricultural landscapes that affect ecological recovery ... 36
7.1. Terrestrial components of agricultural landscapes ... 36
7.2. Surface waters in agricultural landscapes .. 38
7.3. Spatial and temporal characterisation of agricultural landscapes ... 40
8. Usefulness of experimental and modelling approaches to address ecological recovery 41
8.1. Experimental approaches ... 41
8.2. Modelling approaches .. 42
8.2.1. Pros .. 43
8.2.2. Cons .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3.</td>
<td>Overall evaluation of pros and cons of models</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>An integrative approach for addressing ecological recovery for potential stressors</td>
<td>45</td>
</tr>
<tr>
<td>9.1.</td>
<td>Factors affecting ecological recovery of vulnerable non-target organisms after exposure to a potential stressor</td>
<td>45</td>
</tr>
<tr>
<td>9.2.</td>
<td>Relationship between recovery of structural and functional endpoints</td>
<td>47</td>
</tr>
<tr>
<td>9.3.</td>
<td>The need for an integrative approach</td>
<td>48</td>
</tr>
<tr>
<td>9.3.1.</td>
<td>Selection of focal taxa and/or processes</td>
<td>48</td>
</tr>
<tr>
<td>9.3.2.</td>
<td>Selection of appropriate spatial scales to address exposure, effects and ecological recovery</td>
<td>50</td>
</tr>
<tr>
<td>9.3.3.</td>
<td>Conceptual approach of ERA for invasive alien species that are harmful to plant health</td>
<td>52</td>
</tr>
<tr>
<td>10.</td>
<td>How to tackle complexity in environmental risk assessment</td>
<td>54</td>
</tr>
<tr>
<td>11.</td>
<td>Conclusions</td>
<td>54</td>
</tr>
<tr>
<td>12.</td>
<td>Recommendations</td>
<td>56</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>
1. Introduction

The European Food Safety Authority (EFSA) conducts environmental risk assessment (ERA) for potential stressors which are plant protection products (PPPs), genetically modified organisms (GMOs), feed additives and invasive alien species (IAS)\(^\text{1}\) that are harmful to plant health. A potential stressor, as used in this opinion, means an assessed product or an IAS related to the food and/or feed chain in all areas falling within the EFSA remit (see Appendix B for further description on those potential stressors). The concept ‘assessed products’ as used herein means ‘claims, materials, organisms, products, substances and processes’ submitted to EFSA for evaluation in the context of market approvals and/or authorisation procedures.\(^\text{2}\)

In ERA for potential stressors that fall under the remit of EFSA, two protection goal options can be distinguished, viz., the threshold option and the recovery option. The threshold option is the specific protection goal option accepting no (or negligible) population-level effects of exposure to a potential stressor. The recovery option is a specific protection goal option accepting some population-level effects of the potential stressor if ecological recovery takes place within an acceptable time period.

The ERAs are conducted within EFSA’s remit to ensure the safety of the food and/or feed chain. When an effect on ecosystem functioning or on non-target organisms (NTOs) is expected and/or observed, ecological recovery becomes relevant and therefore needs to be considered in the ERA.

In the legal framework, ERA is a mandatory part of the market registration procedure of PPPs,\(^\text{3,4}\) GMOs\(^\text{5,6}\) and feed additives.\(^\text{7,8,9}\) In the case of IAS, there is a legal requirement\(^\text{10}\) to assess potential consequences on the environment of the inadvertent introduction and spread of harmful organisms with trade as well as risk reduction options in order to provide the risk manager and the European Commission (EC) with information that supports the formulation of appropriate measures to reduce the risk of unacceptable impacts.\(^\text{11}\) The regulation providing this legal requirement is currently under revision (EC, 2013). In the current regulations, ecological recovery is not explicitly mentioned and not mandatory, although the assessment and monitoring of any potential undesirable long-term effect on the environment from the deployment of PPPs and GMOs, and from the introduction and spread of IAS is required.

When conducting an ERA, the problem formulation is the appropriate starting point to consider the concept of ecological recovery. A key part of problem formulation is the description of protection goals. In the respective legislative frameworks, these protection goals cover human, animal and plant health, and the environment. However, for the development of a robust risk assessment scheme, these

\(^\text{1}\) According to the Convention on Biological Diversity (CBD), invasive alien species (IAS) are plants, animals, pathogens and other organisms that are non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health (http://www.cbd.int/idb/2009/about/what/). The EFSA plant health panel assesses risks posed by invasive alien species that are harmful to plant health. Therefore, within the context of this opinion, the term IAS refers to invasive alien species that are harmful to plant health. Strictly, the term ‘invasive’ refers to the tendency of a species to disperse and extend the spatial range, or colonise systems from which it was previously absent. An organism is ‘alien’ if it does not naturally occur in a system or area.

\(^\text{2}\) For an official list of the relevant legal acts identifying all the products subject to EFSA’s scientific evaluation see: In managed areas, such as agricultural areas http://www.efsa.europa.eu/en/apdesk/docs/apdeskhow.pdf

\(^\text{6}\) Commission decision for establishing standard reporting formats for presenting the monitoring results of the deliberate release into the environment of genetically modified organisms, as or in products, for the purpose of placing on the market, pursuant to Directive 2001/18/EC (2009/770/EC).

\(^\text{11}\) ISPM No. 11: Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms (2004), Rome.
Ecological recovery in ERA

Ecological recovery goals are broadly defined and need to be further translated into more specific protection goals (SPGs) (EFSA PPR Panel, 2010). These SPGs need to be made specific, testable and measurable to enable the collection of pertinent data that may be assessed by risk managers. Key issues are what to protect, where, and over what period of time.

To derive SPGs, EFSA developed a methodology (EFSA PPR Panel, 2010; EFSA PLH Panel, 2011) that is based on the ecosystem services concept (Nienstedt et al., 2012; Devos et al., 2015). According to this methodology, for each of the ecosystem service providing key drivers, also referred to as service providing units (SPUs) (Gilioli et al., 2014) to be protected, the following dimensions of the SPG need to be defined: the ecological entity (e.g. individual, population, functional group, ecosystem), the attribute of that entity (e.g. behaviour, growth, abundance, biomass, processes), the magnitude of effects (i.e. negligible, small, medium, large), the temporal scale of effect for the attribute (e.g. duration, frequency) and the spatial scales (e.g. in- and off-field patches of landscapes, see EFSA SC, in press (a)). In addition, it is also necessary to set exposure assessment goals which, together with the SPGs, determine the overall level of protection. Risk managers need to take into account the overall level of protection when choosing a SPG and a related exposure assessment goal (EFSA SC, in press (a)).

In ERA schemes for PPPs, SPGs are defined in terms of a ‘threshold option’, where an impact on relevant endpoints is not tolerated (recovery is not relevant), and a ‘recovery option’, where an impact is considered unavoidable and an ‘acceptable’ degree of impact is tolerated (recovery is relevant); the magnitude and spatial and temporal scales of the ‘acceptable’ impact are operationalised (EFSA PPR Panel, 2010, 2013a). For GMOs, the recovery option may be selected under certain conditions, although the magnitude, spatial and temporal scales of the acceptable impact are operationalised in SPGs but assessed on a case-by-case basis (EFSA GMO Panel, 2010a, 2011). Recovery is not taken into account in the current EFSA Guidance for ERA of feed additives (EFSA FEEDAP Panel, 2008). For IAS, the focus of the ERA is different from the other potential stressors, but ecological recovery is part of the scenario assumptions. Its concept is related to that of resilience of an ecosystem (EFSA PLH Panel, 2010a). According to the Plant health (PLH) Panel, a scenario assumption is an attempt to explore what future developments may be triggered by a driving force that cannot or can only partly be influenced by decision makers (Henrichs et al., 2010; Gilioli et al., 2014). A scenario analysis includes explicitly the combination of qualitative and quantitative information and estimates (EEA, 2001). Most of the work on IAS is based on qualitative evaluation that can be translated into quantitative assumptions on the final state of the system (Henrichs et al., 2010).

The way ecological recovery and the five dimensions (ecological entity, attribute, magnitude, temporal scale and spatial scale) of the SPGs are determined for PPPs, GMOs, feed additives and IAS, are further detailed in Appendix A.

In ERA, when addressing ecological recovery, different spatial scales may apply, from the field (e.g. a pesticide-sprayed crop and its immediate surroundings) to the continent (if an IAS enters the EU territory and has the capacity to spread over and impact the whole of the EU territory). In addition, different levels of biological organisation need to be considered in ERAs. For example, due to the nature of IAS, ERAs for these species usually focus on the resilience at the ecosystem level, whereas in the case of PPPs and GMOs, protection of populations is usually the focus of attention, not per se excluding the recovery option. Ecological recovery should therefore be considered at the relevant level of biological organisation.

As a general rule, a regulation that considers ecological recovery could potentially allow impacts on populations of NTOs and possible consequences on ecosystem properties as long as they are reversible within an acceptable temporal and spatial frame. When, locally and temporarily, an effect on communities or some given populations of NTOs is allowed for the use of PPPs in treated fields, ecological recovery becomes an issue and needs to be considered to ensure that effects on NTOs are of acceptable duration and reversible. Also for the effect of PPPs on aquatic organisms in edge-of-field surface waters, ecological recovery was proposed to risk managers as an alternative to the threshold option (where no impact on populations is allowed) (EFSA PPR Panel, 2013a) whereas for feed additives, the focus is on the threshold option (EFSA FEEDAP Panel, 2008).

A final decision by risk managers on the overall level of protection is needed to determine whether ecological recovery should be taken into consideration in the risk assessment or not (see Appendix A for the current status of each regulated product). However, in this scientific opinion, independently of this decision on SPGs and the type of assessed products and/or species of concern, it will be assumed
that ecological recovery is relevant and that a conceptual framework is required to support risk managers in making the best decisions based on informed options and current scientific knowledge.

In this framework, the potential for ecological recovery needs to be considered in space and time. This task is complex and remains a challenge because of: the diversity of agricultural landscapes and, in the case of IAS, of non-agricultural landscapes across Europe; the variability in species vulnerabilities under different climatic conditions; the uncertainty linked to the lack of data on e.g. species life-history traits, species sensitivity and multigeneration effects; and the current gaps in knowledge on indirect effects arising from species interactions (see Section 2 for terminology).

An extra layer of complexity in ERA would be the inclusion of realistic exposure scenarios where populations are most likely exposed to multiple stressors (anthropogenic and/or natural) at the same time or in a sequential order rather than to single stressors and where effects may accumulate over time. In the context of ecological recovery, these scenarios are highly relevant and deserve further attention. To accomplish this, a systems perspective needs to be developed (EFSA, 2014a) and this is the objective of this scientific opinion. Therefore, the Scientific Committee proceeded in four steps. First, the Scientific Committee provided clarification on terminology and concepts that are needed when addressing ecological recovery (i.e. definitions on ecological, internal, external, actual, potential and population recovery; pulse and press disturbances; direct and indirect effects; population stability, resistance and resilience; and the concept of metapopulations). Second, based on these clarifications, the Scientific Committee developed a conceptual framework for addressing ecological recovery for any potential stressor and gathered knowledge to determine the key parameters to be considered, in particular properties of the potential stressors of concern (i.e. PPPs, GMOs, feed additives and IAS) including knowledge on how ecological recovery is currently addressed for each of these stressors, the species traits (i.e. demographic, recolonisation and other traits such as foraging behaviour and adaptation) and the specific features of the landscape (i.e. variations in the composition, structure and management of exposed and unexposed areas). Third, to assess both spatial and temporal ecological recovery taking into account the complexity of the system comprising multiple variables, the Scientific Committee examined the pros and cons of experimental and modelling approaches for the development of this systems perspective approach. Fourth, from the information collected and described above, the Scientific Committee developed an integrated approach for addressing ecological recovery for any potential stressor.

1.1. Background and Terms of Reference as provided by EFSA

The following background information was provided by EFSA to the Scientific Committee, when requesting an opinion on recovery in the ERAs at EFSA.

In EFSA's context, ERA considers the impact on the environment caused by, for example, the application of PPPs, the deployment of GMOs, the introduction and spread of non-native IAS or the use of certain substances as feed additives.

For those products falling within its remit, EFSA is responsible for ERA in accordance with the various relevant legislations (EFSA, 2011). More detailed descriptions of ERA have been developed in a number of guidance documents from individual EFSA Scientific Panels: e.g. EFSA Panel on Plant Protection Products and their Residues (PPR) (2009, 2013a,b; EFSA Panel on Plant Health (PLH) (2010a,b, 2011); EFSA Panel on Genetically Modified Organisms (GMOs) (2010a,b, 2013a,b); EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2008) and EFSA Panel on Biological Hazards (BIOHAZ) (2010a,b); and it is envisaged that other EFSA Panels (e.g. the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)) will perform ERA on applications submitted to EFSA.

To keep up with new regulatory and scientific developments, such guidance documents require updating as appropriate and are therefore considered as 'living documents' (EFSA SC, 2015)). Against this background, the Scientific Committee continues to identify opportunities to harmonise best practices for ERA.

It has become clear over the past few years (see e.g. the EFSA 10th anniversary conference (EFSA, 2012)), that there is a need for making protection goals operational for use in ERA. A need for more harmonised ERAs was also recently pointed out in a letter titled 'Environmental health crucial to food safety' to the editors of Science (Hulme, 2013).

Protection goals are only briefly mentioned in the respective legislative frameworks of the different Panels and could be further specified e.g. by the use of the ecosystem services concept (EFSA, 2010; EFSA PPR Panel, 2010; Nienstedt et al., 2012). Moreover, following a harmonised approach across
ERAs of different potential stressors12 would ensure that environmental protection goals are considered consistently, irrespective of the type of innovation (EFSA SC, in press (a)).

Many of the overarching elements that exist in ERA of respective EFSA areas are related to protection goals. Guidance is needed on methodologies to implement the protection of biodiversity in deriving operational protection goals based on the ecosystem services concept. Two specific items have been identified recently as requiring more detailed scientific consideration for ERA from a working group of the Scientific Committee: coverage of endangered non-target species and recovery of non-target species. Such specific considerations could further complement the currently existing practices for risk assessment, as described in the existing EFSA guidance documents.

EFSA, therefore, requested the Scientific Committee to establish a working group, including experts from the relevant EFSA Panels, to provide separate documents on harmonising the approach to setting protection goals and the two specific elements of ERA within the remit of EFSA, i.e. ‘Coverage of endangered non-target species’ and ‘Recovery of non-target species’.

EFSA requested to consider and involve during the preparation of the opinions the experience and guidance developed by other European Union (EU) and Member State agencies and scientific bodies (e.g. the Scientific Committee on Health and Environmental Risks (SCHER), European Environment Agency (EEA), European Medicines Agency (EMA), European Chemicals Agency (ECHA), Joint Research Centre (JRC)), international bodies (e.g. World Health Organization-International Programme on Chemical Safety (WHO/IPCS), Organisation for Economic Co-operation and Development (OECD)) and other international agencies (e.g. United States Environmental Protection Agency (US EPA)).

For the task of developing an opinion on recovery, the Scientific Committee was requested to consider common approaches and the specific questions to be addressed for this topic including the following:

- Which are the relevant traits of different organism groups and what are their respective quantifiable and/or non-quantifiable parameters that characterise recovery? For example:
 - genetic diversity, needed for populations to adapt to new selective pressures of the environment,
 - potential for internal recovery by the exposed population, determined by life-cycle and reproduction characteristics,
 - potential for external recovery (immigration) from unexposed populations, determined by dispersion ability and mobility.

- How to take into account the potential of recovery in ERA under real field conditions assuming repeated exposure? The above traits of different organism groups relevant for recovery could be used for comparison to e.g. the pesticide application patterns or other exposure patterns relevant for other units of EFSA.

- How to describe the parameters relevant for the recovery of different organism groups in a generic way i.e. which would allow their use in other (or all) relevant areas within EFSA’s remit?

For the two other ERA scientific outputs to be developed by the scientific committee, the Terms of Reference are specified in the respective outputs (EFSA SC, 2016 and in press (a)).

1.2. Interpretation of the Terms of Reference

In accordance with the various relevant legislations in place (EFSA, 2011)13 EFSA performs ERA on the application of PPPs, the deliberate release into the environment of GMOs, the use of certain substances in food and feed (e.g. feed additives) and the introduction and spread of IAS that are harmful to plant health. The purpose is to evaluate their potential adverse effects on the environment.

12 As described in the interpretation of the terms of reference and scope, ‘stressor’ is used herein as ‘environmental stressor’ and means any physical, chemical, or biological entity that can induce an adverse response in the environment. Products/species, i.e. stressors that fall under the remit of EFSA, can be considered as potential stressors. The concept ‘potential products’ as used herein is meant to include ‘claims, materials, organisms, products, substances and processes’ submitted to EFSA for evaluation in the context of market approvals/authorisation procedures.

13 While an overview table is given in EFSA (2011), more detailed guidelines for ERA have been developed in a number of guidance documents from individual EFSA Scientific Panels (Panel on Plant Protection Products and Residues (PPR), 2009 and 2013b; Panel on Plant Health (PLH), 2010a and 2011; Panel on Genetically Modified Organisms (GMO) 2010a and 2013a; Panel of Feed Additives (FEEDAP), 2008 and Panel on Biological Hazards (BIOHAZ), 2010a,b). Moreover, it is envisaged that other Panels (e.g., the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF)) will perform ERA on applications submitted to EFSA.
In this document, such agents are considered as potential environmental stressors but for pragmatic reasons (of abbreviation) are collectively referred to as ‘potential stressors’ throughout the text of this document and as defined in the glossary:14

Potential stressor: used as ‘potential environmental stressor’ and meaning any physical, chemical or biological entity resulting from the use of a regulated product or the introduction of an invasive alien species related to the food/feed chain that is assessed in any area of EFSA’s remit and that can induce an adverse response in a receptor (Romeis et al., 2011). Potential stressors may adversely affect specific natural resources or entire ecosystems, including plants and animals, as well as the environment with which they interact (http://www.epa.gov/risk_assessment/basicinformation.htm).

When stressors are assessed within the remit of EFSA, these are referred to in this scientific opinion as potential stressors. Although this scientific opinion deals with potential stressors assessed by EFSA, the principles of this opinion may also be valid for other stressors assessed by other agencies such as EMA or ECHA, or for other stressors of natural origin.

The overall aim of this opinion is to investigate how to address ecological recovery in the ERA schemes of potential stressors like PPPs, GMOs, feed additives and also IAS that fall under the remit of EFSA.

The term ‘recovery’ is used in a number of different ways in risk assessments. For example, these include physiological recovery with a focus on the individual level, and population recovery focused at the population level. However, for the purposes of this opinion we use the general concept of ecological recovery as this represents the range of levels of organisation addressed by the SPGs for populations, communities and ecological functions. We define ecological recovery as the return of an attribute of an ecological entity to a defined reference state after a disturbance. Ecological recovery can thus be defined at all levels of biological organisation from populations to ecosystems, and including both structural and functional attributes.

EFSA Panels’ ERA schemes and corresponding applicable sectoral legislations are reviewed in the ‘Review of current practices of ERA within EFSA’ (EFSA, 2011). EFSA performs prospective ERA for PPPs, GMOs and feed additives, before being placed on the market. For IAS, EFSA’s ERA can be both prospective and retrospective. The protection of the environment is also envisaged by the risk assessment of certain biological hazards in certain products (e.g. animal by-products) and can be envisaged for more products of relevance to EFSA Scientific Panels (e.g. for food contact materials).

1.2.1. Specific objectives

Following the EFSA 10th Anniversary Scientific Conference (EFSA, 2012), wherein experts from various EFSA areas provided details and exchanged experiences on their current schemes for ERA, the Scientific Committee explored the differences and similarities across EFSA areas when addressing ecological recovery. In response to the Terms of Reference, this opinion will therefore formulate ‘specific steps for achieving harmonisation of how to address ecological recovery in ERA’:

The main advantage of harmonisation is to have a common and easy-to-understand communication tool for the full range of stakeholders, risk assessors and risk managers involved in the ERA. This opinion will also aid when detailing the problem formulation and the required evidence base for risk assessments that address recovery, thus contributing to transparency, as requested by EFSA. Harmonisation also contributes in setting the ERA on a more solid scientific foundation and can be a first step to future guidance development (within the respective EFSA areas).

1.2.2. Scope

Consistent with EFSA’s responsibilities regarding the food and feed chain, the scope of this opinion includes the risk assessment of products for use in, or threatening, plant and animal production, including their impact on the wider environment, as well as IAS that are harmful to plant health.

Those products and/or species in scope are termed hereafter as ‘potential stressors’.12 The concept ‘potential stressors’ as used herein means ‘claims, materials, organisms, products, substances and processes’ submitted to EFSA for evaluation in the context of market approvals and/or authorisation procedures.15

14 It is recognised that particular terms apparently have different meanings when used in the different areas of the EFSA’s remit.

15 For an official list of the relevant legal acts identifying all the ‘products’ subject to EFSA’s scientific evaluation see: http://www.efsa.europa.eu/en/applicationshelpdesk
Other stressors, such as habitat destruction or environmental contamination and products associated with uses and activities covered by other regulations, such as those on pharmaceuticals, biocide products or the ‘Registration, Evaluation, Authorisation and Restriction of Chemicals’ (REACH), are not considered explicitly in this opinion, as they fall outside the remit of EFSA. Furthermore, the scope covers the risk assessments of single potential stressors as currently foreseen in the specific regulatory frameworks, whereas the Scientific Committee recognises that a more holistic assessment considering multiple potential stressors (in and outside of the remit of EFSA, assessed and non-assessed) is essential for ensuring the viability and protection of the environment in the long-term. In this sense, this opinion could be also of interest for other organisations such as EEA.

In managed areas, such as agricultural areas (and also, where relevant, aquaculture areas), typically a whole range of protection goals can be set and one has to prioritise what to achieve and what to protect. Regarding such managed areas, and the biodiversity therein, trade-off decisions have to be made as one cannot protect all species and/or ecological functions, everywhere, at the same time in agriculture and aquaculture. Biodiversity is a common and prominent legal protection goal for all ERAs performed by EFSA and it is noted that agricultural systems are highly disturbed habitats with food production as one main goal. However, it is also noted that agricultural areas can form quite large proportions of the area of some Member States and therefore protection of the biodiversity as another common good might strongly depend on the implementation of biodiversity goals in these areas (e.g. farmland birds as one prominent group). EFSA is not responsible for trade-off discussions, as this falls under the domain of risk management. The scope of this scientific opinion is to provide an approach and tools to address recovery in ERAs of those regulated products that fall under the remit of EFSA (i.e. PPPs, GMOs, feed additives and IAS).

1.3. Aim of the opinion

The aim of this opinion is to present information on how ecological recovery is covered under current single-stressor ERA schemes at EFSA and how it could be implemented considering the complexity of the environment. In this risk assessment domain, the EFSA Scientific Committee recognises the importance of more integrated ERAs considering both the local and landscape scales, as well as the possible co-occurrence of multiple potential stressors that fall under the remit of EFSA, which are important when addressing ecological recovery. In this document, the Scientific Committee gathered scientific knowledge on the potential for recovery of non-target organisms for further development of ERAs. This document is not a guidance document, but a scientific opinion to promote a dialogue between different panels of EFSA, and risk assessors and risk managers responsible for the food and feed chain. One additional aim of this opinion is to provide risk assessors with a conceptual and systems approach to address ecological recovery in ERAs for any assessed products, and IAS that are harmful for plant health. This approach is based on well-defined specific protection goals, scientific knowledge derived by means of experimentation, modelling and monitoring, and the selection of focal taxa, communities, processes and landscapes to develop environmental scenarios to allow the assessment of recovery of organisms and ecological processes at relevant spatial and temporal scales.

2. Data and methodologies

2.1. Data

The types of evidence used in the current opinion are:

- The evidence base used for this mandate stems primarily from expert knowledge gathered by a working group of the EFSA Scientific Committee dedicated to the work of this opinion, consultations with members of the EFSA PPR, GMO, FEEDAP and PLH Panels, from published EFSA scientific opinions, Guidance Documents and an external scientific report requested by EFSA on ecological recovery (Kattwinkel et al., 2012) and from data retrieved from the literature.
- Established ERA approaches as described in existing EFSA Guidance Documents and scientific opinions from the FEEDAP, GMO, PLH and PPR Panels (i.e. EFSA FEEDAP Panel, 2008; EFSA

16 This goal is heavily impacting on biodiversity through necessary agricultural management practices such as tillage, ploughing, harvesting, etc. Greenhouse gas emissions are also stressors related to agricultural practices, but not further discussed herein.

2.2. Methodologies

The methodology used for this opinion was to aggregate the information from the diverse EFSA areas (e.g. overviews in EFSA scientific opinions and guidance documents and information from the open literature) and external experts, discuss them in a working group of the EFSA Scientific Committee and extract from such discussions principles and proposals for adoption by the EFSA Scientific Committee. EFSA followed its specific standard operating procedure detailing the steps necessary for establishing, updating or closing the working group of the Scientific Committee that prepared this opinion. The standard operating procedure implements the Decision of the Executive Director on the selection of experts of the Scientific Committee, Panels and working groups.17

Wide consultation prior to the adoption of this opinion took place as follows:

- Prior to the first operational meeting of the working group, the topics of the mandate were openly discussed with experts representing a wide variety of stakeholders. The summaries and outcomes of the discussions from the 19th EFSA Scientific Colloquium on ‘Biodiversity as Protection Goal in Environmental Risk Assessment for EU agro-ecosystems’ are published on EFSA’s website (EFSA, 2014a).
- Letters of invitation to participate in this activity were sent to other EU risk assessment bodies (ECHA, EEA, EMA, JRC, SCENIHR and SCHER), and to WHO, OECD and US EPA. All invited risk assessment bodies and the OECD have appointed a contact point or an observer to the working group meetings.
- A public consultation (involving international institutions) was held online between mid-June and mid-September 2015. The report of this public consultation will be published together with this opinion.

3. Terminology related to ecological recovery

3.1. Environmental stressors and pulse and press disturbances

An environmental stressor is a chemical, physical or biological agent to which organisms are exposed in the environment, and that acts on and causes an adverse response in these organisms. Different combinations of stressors may act simultaneously or sequentially (multiple potential stressors). Environmental stress can be defined as the change in environmental conditions caused by natural stressors (e.g. nutrient depletion, natural toxins, drought, floods, avalanches, grazing and parasites) and/or anthropogenic environmental stressors (e.g. pollution, agriculture, fishing, deforestation). In this document, the term stress is considered synonymous with the frequently used terms disturbance and perturbation. Above certain thresholds of exposure, environmental stressors disrupt the normal operating range (NOR) of the structural and functional properties of populations, communities or ecosystems. The NOR corresponds to the acceptable bounds or range in values of a measurement endpoint that is normally observed during a predefined period in the reference ecosystem. For example, application of a pesticide may greatly reduce the density of carabid beetles in a crop field; thus, the population density of these species is pushed out of its NOR by the disturbance. Note that the NOR of e.g. the population density of a species may be different in different types of ecosystems and in different periods of the year. According to Bender et al. (1984), a specific environmental stressor might result in a stress-period of limited duration (pulse disturbance) or in a prolonged stress-period (press disturbance), dependent on the environmental persistence and/or frequency of occurrence of the environmental stressor of concern. A pulse disturbance may cause a relatively instantaneous but short-term alteration of the densities of certain sensitive species, after which the population may return to its NOR. Note, however, that short-term localised exposures to a environmental stressor may result in long-term effects if the impacted organisms are not able to repopulate the stressed habitat by reproduction and/or recolonisation. In addition, if short-term exposures to environmental stressors repeatedly occur, and the period between exposure events is shorter than the recovery time of impacted populations, the cumulative impact may resemble that of a

press disturbance. A sustained alteration of the density of certain species may shift the system to a new configuration (alternative stable state), particularly if populations of key species are severely impacted (see Section 3.3.3).

3.2. Direct and indirect effects

Direct and indirect effects are defined as follows:

- A direct effect on an ecological entity (such as a specified NTO species) refers to an effect that is mediated solely by the interaction between the specified receptor and the environmental stressor, i.e. the receptor is exposed directly to the environmental stressor and as a result the receptor exhibits a response.
- An indirect effect involves effects being transmitted to the specified receptor through an indirect route involving one or more other, intermediary, receptors. A predatory NTO for example could be affected indirectly by an environmental stressor in several ways, including effects of the environmental stressor reducing the abundance of its prey species, its intraspecific or interspecific competitors, its pathogens or its parasites.

The same ecological receptor may experience both direct and indirect effects from an environmental stressor. Given the myriad multitrophic interactions that take place between individuals in ecosystems, there is potential for some indirect effects to be complex and it may not always be known which intermediary receptors and pathways are involved. Where there are several intermediary receptors, each with its specific life-history and resilience characteristics, it may be difficult to predict the overall effects, including the ecological recovery of impacted entities or processes.

3.3. Ecological recovery and resilience

3.3.1. Definitions of recovery and normal operation range

Cyclic (e.g. diurnal, seasonal) and other fluctuations in environmental conditions are normal phenomena in nature. Ecosystems are self-regulating systems that have evolved mechanisms of self-repair and their biological populations are adapted to resist and recover from fluctuations in environmental conditions, at least when fluctuations are limited to restricted spatial and temporal scales. According to Lahr (2000), strategies that organisms apply to survive unfavourable periods comprise dormancy (escape in time) and dispersal (escape in space). These mechanisms to cope with natural stressors may also apply to disturbances of anthropogenic origin, particularly if they concern pulse disturbances.

When defining ecological recovery, a distinction between actual and potential recovery can be made (van Straalen et al., 1992; Brock and Budde, 1994). Actual recovery is the return of the perturbed ecological entity or process (e.g. species composition, population density or ecosystem services) to the NOR observed in the undisturbed state of the ecosystem of concern, for example to a level that is not significantly different from that in control or reference systems. Potential recovery is defined as the situation in which the environmental stressor has diminished to a level at which it no longer has direct (toxic) effects on the ecological entities of interest and after which recovery of impacted populations theoretically can start if there is a ready supply of propagules (e.g. offspring of surviving individuals or recolonisation). Within this context, a distinction should be made between (1) effect period: the time-window during which the environmental stressor-related effect on the ecological entity or process is observed, from the moment that the effect of the environmental stressor on the ecological entity or process starts until the time that its effect can no longer be observed, (2) recovery time: the time period from when the environmental stressor has dropped to a level at which it no longer has direct (toxic) effects until the moment that the ecological entity or process has returned to its NOR and (3) positive recovery phase: the time period during which an ecological entity or process is returning from the maximum level of impact from the stressor (including any delayed impacts materialising after the stressor has returned to a level at which it no longer has adverse effects) to a level within its NOR (Figure 1).
Recovery presupposes that a population has a NOR to which it can return after disturbance. Furthermore, it presupposes the existence of processes that support the recovery. Recovery and the NOR are closely linked to the ecological concepts of stability and resilience. Many definitions of these concepts exist, in accordance with the field of application. In general terms, the stability of a population will determine the extent to which it can withstand and recover from a perturbation. Often, two components of stability are distinguished. The first is resistance, defined as the magnitude of environmental perturbation a population can tolerate without being pushed out of its NOR. The second component of stability of a population is resilience, the capacity of an ecological entity to return to the NOR, and the time taken to do so (e.g. Pimm, 1984). A population with high resilience has a high capacity to return to its NOR and a short-return time after disturbance outside this range. A population with low resilience has a limited capacity for return to NOR and a long-return time. Population resilience depends on the ecological context and is related to the degree to which induced fluctuations in the population density are buffered by density-dependent feedback mechanisms and competition with other species (Knillmann et al., 2012).

The capacity for population growth affects the rate at which a population may return to its NOR after a stressor has been removed (Berryman and Kindlmann, 2008; Gotelli, 2008). Species with high potential rates of population growth are better predisposed to recover rapidly from effects of a stressor than species with low potential rates of population growth. A NOR will usually be the result of density-dependent processes operating in conjunction with spatial-temporal fluctuations in the biotic and abiotic environment. When a population is at equilibrium, its net rate of population growth is by definition zero, however, underlying this zero net rate of growth may be high-gross rates of reproduction and immigration, compensated for by high-gross rates of death (e.g. due to short life-history) and emigration, effectively cancelling each other out. These gross rates are likely to show density dependence (e.g. the relative death rate or probability of emigration increases with density or the relative birth rate decreases with density), resulting in a stable level, usually called ‘carrying capacity’ (see Hui (2006) for a discussion on alternative points of view). If the net population growth rate near an equilibrium is high, recovery to this equilibrium may be quick, and the population may be resilient to stress. If, on the other hand, the net population growth rate at the equilibrium is low, return to equilibrium will be slow, and the population will not be resilient to stress. The rate and density dependence of birth and death at the equilibrium may thus affect the capacity for recovery from stress. The level of the equilibrium in itself gives insufficient information to assess potential for rapid recovery. The resilience of a population furthermore depends on the ‘quality’ of its individuals, e.g. their size and nutrient status, in relation to its current and past abiotic and biotic environment. Quality can be affected by stressors, and cumulative effects of different stressors may deserve consideration.
Population recovery has two components: internal recovery and external recovery. Internal population recovery depends upon surviving individuals in the stressed ecosystem or upon a reservoir of resting propagules (e.g. seeds and ephippia) not affected by the environmental stressor. In contrast, external population recovery depends on the immigration of individuals from neighbouring areas by active or passive dispersal. The internal and external rates of recovery therefore depend on the life-history characteristics of the affected species (see for instance Caquet et al. (2007) and Maund et al. (2009)) such as the number of generations per year and the associated life-history strategies, the presence of relatively less exposed or insensitive (dormant) life stages and the capacity of organisms to actively migrate from one site to another (Barnthouse, 2004; Liess and Von der Ohe, 2005; Solomon et al., 2008; Kattwinkel et al., 2012). Voltinism (pertaining to the number of broods or generations per year) may be an important property determining rates of population recovery of invertebrates in particular. Multivoltine organisms have more than two generations per year, bivoltine organisms have two generations per year, univoltine organisms one and semivoltine organisms less than one, i.e. the generation time is longer than one year. Note that the number of generations per year of species may vary with temperature and consequently with latitude and the length of the growing season (Niemi et al., 1990). Consequently, when recovery is taken into account in ERA, differences between latitudes may be of importance, particularly when extrapolating data from temperate to colder regions.

External population recovery cannot be evaluated without considering the spatial landscape context in which biological populations and environmental stressors occur. Modelling may be required to address spatial and temporal scales, and there is a range of conceptual approaches to deal with spatially structured populations. There are many different ways of spatial modelling. Modelling can be grid-based, with the landscape being represented on a spatial grid or it could be patch-based, with the habitat patches, and the subpopulation contained therein, being represented in space explicitly, or implicitly. Furthermore, spatial processes can be represented by representing the individual ‘actors’ (e.g. individual predators or birds), resulting in an individual-based model. A metapopulation spatial modelling approach may be helpful for evaluating external recovery in patchily distributed populations.

A metapopulation is one type of spatial model. It represents a ‘population of populations’ of the same species where individual populations are connected through immigration and emigration (Levins, 1969; Hanski and Gilpin, 1991). Metapopulations are often specified as abundance-based models with discrete, implicit spatial representation (see Figure 2). To represent species with an aggregated distribution not based on specific landscape patches, models that represent space explicitly and continuously would be preferred, such as individual-based models. In all cases, subpopulations within the larger population may serve as sinks or sources (Pulliam, 1988).

Sink populations in landscapes are local subpopulations within spatially structured populations that do not produce enough offspring to maintain future generations without immigrants, whereas source populations are characterised by excess of offspring acting as a net source of emigrants. To protect populations in landscapes, it is necessary to maintain areas with viable source populations that can serve to replenish populations recovering from stresses. In landscapes characterised by intensive use by man (e.g. agricultural landscapes), and in which introduced stressors may locally eliminate populations, refuge areas with viable source populations are essential to facilitate external recovery.

If external recovery plays an important role in the re-establishment of a subpopulation, mortality due to an anthropogenic stressor in one patch of an agricultural landscape (e.g. stressor exposure in a specific area) may have ecological effects on subpopulations of the same species in non-exposed patches of landscape if these populations are connected through dispersal and are therefore part of the same larger population network. We refer to this as action at a distance (Spromberg et al., 1998) (Figure 2).

An understanding of the arrangement and connectivity of habitats, resources and environmental stressors in the landscape (ecological infrastructure) is needed to assess the effects of environmental stressors and external recovery on populations (see e.g. Thomas et al., 1990; Sherratt and Jepson, 1993; Spromberg et al., 1998; Brock et al., 2010b; Topping and Lagisz, 2012). It is important to make a distinction between the stressor-receiving area and the stressor-impacted area. The stressor-receiving area is the area where exposure to the environmental stressor(s) of

18 Given the difficulty to characterise most microbial species because of the inability to distinguish microorganisms at high resolution (species and strains) and to track them in situ (Pace, 1997), the concept of metapopulation for microorganisms can only be considered at low resolution (genus, family) or functional level.
A - Subpopulation stressed by an assessed product (e.g. pesticide); B1–3 = Subpopulations not exposed to the assessed product but subject to dilution of abundance due to net migration of individuals to the stressor-receiving patch; Subpopulation B3 is less impacted than B1 and B2 due to connections with C1 and C2; C1–2 = Subpopulations that are not exposed and hardly subject to action at a distance; D = Subpopulation characterised by a size that is smaller than the minimum viable population (MVP).

Figure 2: Schematic illustration of a metapopulation with seven subpopulations to exemplify the concept of action at a distance.

3.3.3. Ecosystem resilience and recovery

Multiple equilibria (i.e. multiple possible stable states) are a common observation in ecological systems (Holling, 1973; Scheffer, 1998; Scheffer et al., 2001; Scheffer and Carpenter, 2003). Once a system makes a transition to a new stable state, it may be very difficult to reverse this and the environmental conditions under which such a reversal is possible may be quite different from the conditions that caused the original transition, a phenomenon known as hysteresis (see below). Stansfield et al. (1989) argue that the reduced populations of cladocerans due to organochlorine pesticides in freshwater in the 1950s and 1960s assisted in a eutrophication-related transition from a macrophyte-dominated system to an algae-dominated ecosystem in a set of shallow lakes in the UK, illustrating the possibility of complex ecological relationships between disturbance and effects. Such disturbance effects could be persistent even after the level of the stressor has been reduced to a level without direct impact, due to the multiple stable equilibria in the system. A related phenomenon has been observed in herbicide-treated experimental ecosystems, where at higher exposure levels, the system changed from a macrophyte-dominated to an algae-dominated ecosystem (van den Brink et al., 1997). Further work is needed to explore the effects of stressors on critical transitions between alternative stable states. Ecosystem resilience has been defined in various ways, but usually refers either to the amount of disturbance that can be absorbed by an ecosystem before the system redefines its structure (i.e. deviates from its NOR), or the time it takes for the ecosystem to return to a stable state within the NOR following the disturbance (Gunderson, 2000). When considering recovery, it should be borne in mind that the ecosystem might not necessarily return to the same stable state.
that it exhibited before the disturbance. The extinction of key species for example may alter the trajectory of ecological recovery and functioning of the ecosystem in such a way that an alternative equilibrium (steady state or stability domain) is reached. In such a case, full recovery is not achieved.

Hysteresis refers to a phenomenon where the trajectory of ecological recovery after removal of an environmental stressor is not the same as the trajectory of ecological deterioration. Elliot et al. (2007) make a distinction between two types of hysteresis (Figure 3). Type I hysteresis refers to a difference in effect and recovery trajectories when the ecosystem recovers to its NOR (i.e. complete resilience). Type II hysteresis refers to the difference between the NOR of the original ecosystem and that of the alternative stable state of the system when there is not complete ecological recovery (i.e. incomplete resilience).

Where disturbances lead to shifting stability domains, management options fall into one of three general classes of response (Gunderson, 2000). The first is to do nothing and wait to see if the system will return to some acceptable state. The second option is to actively manage the system and try to return the system to a desirable stability domain (which may be the aim in an ecological risk assessment). The third option is to admit that the system is irreversibly changed, and hence the only strategy is to accept the new, altered system state.

4. A conceptual framework to assess ecological recovery from effects of potential stressors in agriculture

If the problem formulation phase of the ERA reveals that recovery of NTOs is an issue for a potential stressor and has to be addressed, a conceptual framework can guide the process to increase the realism in the assessment of ecological recovery of populations of vulnerable NTOs in agricultural landscapes. The conceptual framework of this approach is presented in Figure 4.

Figure 3: Schematic illustration of changes to the state of a system with increasing disturbance caused by one or multiple environmental stressors

In the illustrations, both the trajectories of disturbance and recovery are presented, which do not follow the same route. In panel A, the state of the stressed system returns to its original stable state as a result of recovery. In panel B, the changes caused by the environmental stressor(s) are not reversible and the trajectory of recovery results in another stable state of the system.

Source: revised from Elliot et al., 2007
First of all, this approach requires well-defined SPGs. Secondly, to perform an ERA addressing the recovery option, the decision schemes and the ERA tools should have a sound scientific basis. This would require the following information:

- Environmental exposures to potential stressors in relevant environmental compartments as affected by physical, chemical and/or biological properties of these stressors, agricultural land-use, climate, soil type and hydrological conditions (a general requirement for ERA, irrespective of the recovery option);
- Sensitivities of focal NTOs to potential stressors as derived under standard laboratory conditions, or, if the focal NTOs cannot be tested in the laboratory, predicted sensitivities using experimental data from other (surrogate) species by means of appropriate extrapolation techniques;
- Climate zone specific data on demographic and mobility traits of (focal) species dwelling in agricultural landscapes (to select focal taxa and communities to address ecological recovery in ERA);
- Geographic information system (GIS) data to analyse the relevant properties of (focal) agricultural landscapes of concern such as the spatial configuration of fields, crops and off-field refuge areas (to select focal agricultural landscapes to address ecological recovery in ERA);
- Population- and community-level responses of exposure to potential stressors as derived from (semi)field experiments (to study the rate of recovery of affected endpoints, to evaluate possible indirect effects on ecological recovery and to inform mechanistic effect models to address recovery in ERA);
- Appropriate modelling approaches, consistent with the principles of good modelling practice, for spatial-temporal extrapolation of experimental data;
- Evaluation of potential conflicts with essential ecosystem services underlying other SPGs;
- Field monitoring data on (a) exposures of potential stressors as a reality check to identify unexpected exposure routes and landscape specific exposure to multiple potential stressors and (b) population dynamics of NTOs in agricultural landscapes;
- A retrospective reality check of prospective ERAs is desirable. Prospective ERAs will not be able to always ensure an adequate protection of NTOs since the spatial and temporal scale of their use (e.g. PPPs, GMOs and feed additives) in Europe usually is not known in advance whereas

Figure 4: Conceptual framework for the assessment of ecological recovery in prospective ERAs for potential stressors
also unexpected effects may become apparent later and stakeholders’ views on the acceptability of effects may change in time. A retrospective reality check would use multiple lines of evidence including novel scientific knowledge published in the literature and information on changes in the ecological and chemical status of ecosystems and landscapes obtained from biological and chemical monitoring programmes.

Ideally the above information should be organised in databases. These databases would be important to select focal communities, species, processes and landscapes that may be necessary to inform the design of (semi)field experiments; and for the construction of environmental scenarios to use with mechanistic effect models that aim to address the ecological recovery option.

The overall structure of the conceptual framework (Figure 4) is therefore that the SPGs define the overall scope of the recovery assessment and provide the spatial, temporal and biological reference level to be considered (e.g. functional groups in specific systems for microbes or regional populations for most invertebrates). Within the bounds specified by the SPG the recovery assessment framework comprises of the tools identified for usage in ERA (i.e. experiments and models) which are used to implement an assessment within an environmental scenario. This scenario is, in turn, fed by input parameters defining focal landscapes, environmental factors, biological entities and potential stressor properties. The input parameters are informed by supporting information from scientific knowledge, social information (such as farmer behaviour) and ongoing monitoring. Results of the recovery assessment should be verified with reference to the supporting information as this will change with time. This means that there should be a formalised iterative link between ERA and monitoring to ensure that ERA methods are up-to-date, but also to evaluate and improve the modelling tools used for ERA.

The feedback loop from assessment to monitoring is a critical component of this framework, and will need to be implemented. Both the state of knowledge and the state of the environment are in flux, and as more complex assessment procedures are developed, these dynamic aspects need to be formally considered, as does a procedure for iterative testing and improvement of the tools used to support the recovery framework.

Guidance on how to derive specific protection goals for potential stressors is given by the EFSA Scientific Committee (in press (a)), whereas an overview of how the recovery option applies for the different potential stressors is provided in Appendix A. The following describes in detail the main building blocks of the conceptual framework presented in Figure 4.

- **Potential stressors:** In Section 5, information is provided on the patterns of use of assessed products, and the presence of IAS, in space and time. In addition, this Section describes how ecological recovery is taken into account in EU legislation underlying different potential stressors and discusses the current knowledge base on ecological recovery from exposure to different potential stressors.
- **Focal species:** In Section 6, species traits affecting internal and external ecological recovery are discussed. This information is important for selecting the focal taxa on which ERA should focus when addressing the ecological recovery option.
- **Focal landscapes:** In Section 7, the specific features of landscapes that affect ecological recovery are discussed for both populations of terrestrial and aquatic NTOs.
- **(Semi)field experiments and monitoring:** In Section 8.1, the pros and cons of experimental approaches and landscape scale monitoring studies to address ecological recovery are discussed.
- **System modelling:** In Section 8.2, the pros and cons of modelling approaches to address ecological recovery are discussed.

In Section 9, the conceptual framework presented above in Figure 4 is revisited and used to illustrate the importance of developing an integrative approach for addressing recovery for potential stressors. In addition, in Section 9, the relationship between recovery of structural and functional endpoints is described and general guidance is provided on the selection of focal taxa and/or processes and the selection of the appropriate spatial scales to address exposure, effects and ecological recovery.
5. Properties of potential stressors and how ecological recovery is addressed

5.1. Plant protection products (PPPs)

5.1.1. Patterns of use in space and time

Pesticides are chemical or biological (e.g. bacterial) substances, or a mixture of substances, intended for preventing or controlling pests. The most common agricultural use of pesticides is as PPPs, which in general protect crops from damaging influences of pests such as weeds, plant diseases or insects. As many non-pest species are taxonomically related to pest organisms, and a relatively large part of the PPPs applied reaches a destination other than their target pest species, the use of PPPs also results in exposure and effects on NTOs. Information on trends in the use of PPPs in Europe and on exposure and effect assessment in ERA is provided in Section B.1 of Appendix B.

5.1.1.1. Timing of application

Since exposure is a function of the ecology and behaviour of the organism, and internal toxicokinetics, the life stage or physiological condition that the organism is in when exposed to the PPP can be very important. For example, in a damselfly both spatial and temporal co-occurrence of the pesticide and insect, as well as differential sensitivity of different life stages were found to be important in determining pesticide impacts (Takamura, 1996). Clearly, organisms with a sessile stage that occurs in an unexposed microhabitat will not be affected by pesticide application (e.g. beetle eggs in soil will not be exposed to a foliar spray). Hibernating life stages (e.g. tubers and seeds of aquatic macrophytes) may be less sensitive to PPPs exposure in winter time when the organisms are metabolically less active.

5.1.1.2. Number and frequency of applications of the same PPP

Effects on NTOs of repeated applications of the same PPP in a crop are taken into account in ERA, but the time-frame considered usually is limited to one growth season. Population-level effects of a few applications of the same PPP may be subtle and remain unnoticed, but a gradual increase in impact from applications made over several years may occur. This suggests that also a long-term evaluation of ecological recovery may be required (Liess et al., 2013; EFSA PPR Panel, 2015).

5.1.1.3. Cumulative risks to different PPPs

Currently in prospective ERA the exposure and effect assessment is predominantly conducted one PPP at a time. In the current European registration procedure, the number of applications of the same pesticide in the crop is taken into account but not the cumulative stress of the different pesticides used in the crop protection programme or in agricultural landscapes characterised by different crops. An important question is whether the chemical-by-chemical approach in the current prospective ERA for PPPs is sufficient to also prevent cumulative risks from exposure to different PPPs, as well as to predict ecological recovery at realistic spatial and temporal scales. Chemical monitoring data and model calculations, however, seem to indicate that in individual edge-of-field surface waters usually a limited number of pesticides (seldom exceeding from 2 to 3) dominate the mixture in terms of toxic units (see e.g. Liess and Von der Ohe, 2005; Belden et al., 2007; Schäfer et al., 2007; Verro et al., 2009). Consequently, when addressing cumulative stress of pesticides in ERA, it seems cost-effective to focus on those pesticides that dominate the exposure in terms of toxic units (>90%). Information on the distribution of crops in agricultural landscapes and frequently occurring pesticide combinations may be derived from existing databases (e.g. databases under the EU subsidies scheme and databases from EU pesticide usage as collected within the frame of the Sustainable Use Directive). This information may be important input for population models to evaluate effect periods and recovery times following pesticide stress in a realistic agricultural landscape context. For example, Focks et al. (2014b) demonstrated that simulated exposure in edge-of-field surface water to a combination of pesticides typical for tuber and orchard crops may lead to increased mortality probabilities and effect sizes for a vulnerable aquatic invertebrate but would not lead to longer recovery times than when exposed to the individual compounds.
5.1.2. Ecological recovery in European guidance documents

An overview of SPGs for PPPs and the recovery option is presented in Appendix A. For vertebrates (birds, mammals, fish, amphibians) the recovery option is not selected as mortality of individuals due to acute toxicity is not allowed. For other groups of organisms, recovery is assessed through semifield (e.g. mesocosms) or field studies, but population models are not excluded.

Terrestrial organisms: For soil microorganisms the Guidance Document on Terrestrial Ecotoxicology (EC, 2002) specifies that the change in activity should be no greater than 25% after 100 days. For terrestrial non-target arthropods (NTAs) current practice is based on Escort 2 (implemented in EC, 2002), where in-field recovery shown within one season is considered acceptable. However, new information suggests that whereas this approach will probably be relevant for non-mobile in-field arthropods, the prediction of the effect in space and time for populations of mobile arthropods requires a landscape-scale assessment (EFSA PPR Panel, 2015); here recovery is implicitly part of this landscape-level impact assessment. According to the EFSA PPR Panel (2012), effects on colony size of bees should never exceed 7%, but bee forager mortality can be increased for a certain period (e.g. a factor of 3 over 2 days). For in-soil macroorganisms, currently there is no guidance on how to assess ecological recovery, but the PPR panel is in the process of drafting a scientific opinion on the ERA for soil organisms exposed to PPPs.

Aquatic organisms: For aquatic organisms, guidance on ecological recovery is available in the EFSA Aquatic Guidance Document (EFSA PPR Panel, 2013a) which gives several criteria for higher tier micro/mesocosm studies to derive Regulatory Acceptable Concentrations on the basis of the recovery option:

- The exposure regime studied (e.g. height, duration and frequency of pulse exposures) in the microcosm or mesocosm test system should be realistic to worst case relative to the exposure profile predicted for the relevant edge-of-field aquatic ecosystem (threshold and recovery option);
- At least eight different populations of different species of the potentially sensitive taxonomic group (informed by lower tiers and read across) should be present in the test systems with an appropriate minimum detectable difference (MDD) to demonstrate possible treatment-related effects on population abundance (threshold and recovery option);
- A few representative populations of the potentially sensitive taxa mentioned above should also be vulnerable with respect to recovery (recovery option);
- The accepted total effect period for the most sensitive population in aquatic microcosms or mesocosms is not longer than 8 weeks (as a result of consultation with risk managers) (recovery option);
- The duration of the population-level effects should be statistically underpinned by considering appropriate statistical techniques and information on MDDs (recovery option).

5.1.3. Studies and data on ecological recovery from exposure to plant protection products

5.1.3.1. Terrestrial organisms

A recent EFSA-commissioned external review ‘Ecological recovery of populations of vulnerable species during the risk assessment of pesticides’ (Kattwinkel et al., 2012) investigated ecological recovery following PPP use among vertebrates and invertebrates. In total, 55 different pesticides were investigated in 55 studies on terrestrial invertebrates, although many of them are no longer authorised in Europe (e.g. pentachlorophenol and 2,4,5-trichlorophenoxyacetic acid). Thirty-three (60%) of the studies were published since 2000 and 12 (22%) were published in the last 2 years before the review (i.e. before 2012). The designs included laboratory studies (12 on microbes), 2 semifield and 37 field studies. The size of the investigated areas in the field varied considerably: subplots (< 10 m²) were used in 10 studies, plots (10 m²–1 ha) in 11 studies, sites (1–10 ha) in 7 studies, landscape level (> 10 ha) in 5 studies and the area was not reported in 4 studies. The studies were conducted in a wide range of countries globally but it is notable that in countries with a long tradition in pesticide studies (e.g. France, Germany and the Netherlands) almost no field relevant terrestrial field study was found published in the open literature. Overall, there were too few comparable data from the included studies for a formal quantitative analysis. No clear pattern was evident between a taxon’s generation.
time and the time for recovery. However this probably reflects the limitations of the data rather than lack of a relationship.

Although the aim of the review was to evaluate the recovery process of populations and communities after pesticide exposure in a systematic way with regard to the investigated taxa groups, substance classes, modes of action and additional environmental conditions, it was not possible to derive general, reliable recovery times out of the available literature.

A number of studies provide insights into factors that influence the recovery of terrestrial invertebrate populations following adverse effects of pesticide use. Among the carabid ground beetles, for example, life-history characteristics including the number of generations per year, overwintering site, timing of reproduction and dispersal in relation to the timing of pesticide applications, and overwintering strategy (e.g. whether as an adult or larva) are known to influence the persistence of pesticide effects and the likelihood of recovery (Vickerman, 1992). In the large-scale Boxworth project (Greig-Smith et al., 2002), Burn (1992) classified predatory arthropods into groups according to their dispersal ability (poor, moderate, high), principal overwintering stage (adult or larva) and overwintering habitat (midfield or non-crop habitat). The most vulnerable species to direct and indirect effects of insecticides, and least able to recover in abundance within the same season, were those with poor dispersal ability which overwintered within arable fields as adults on the soil surface. Conversely, the least affected and fastest recovering species were those that had moderate or high dispersal ability and either overwintered as adults in non-crop habitats or within fields as subterranean larvae. Hedgerows in crop edges are potentially important sources of recovery of predatory arthropods (Burn, 1992; Vickerman, 1992) and other soil invertebrates such as Collembola (Alvarex et al., 1997; Frampton, 2002; Frampton et al., 2007). However, it should be noted that hedgerows (as with other source habitats) do not necessarily act as a continuous source of recolonisation since the timing of dispersal from hedgerows is governed by a species’ life-history. For example, effects of an insecticide on the predatory carabid beetle Agonum dorsale were found to depend on the exact time of the insecticide application in relation to the beetle’s time of dispersal from hedgerows and both these events varied from year-to-year (Burn, 1992). Year-to-year variation in abundance patterns can make interpretation of recovery difficult, e.g. for linyphiid spiders in wheat fields in the Boxworth project, in most years abundance increased through the summer (April to August), but in some years abundance was roughly similar across months whereas in 1 year a clear decline occurred from April to August (i.e. opposite to the usual pattern) (Vickerman, 1992). Heterogeneity of species’ spatial distribution is another factor that can complicate the assessment of recovery following pesticide effects. For Collembola and other soil invertebrates, individual species may be present in one field but not the next adjacent one (Frampton, 1999), or may be restricted to only part of a field (Frampton, 2001a,b), or may exhibit distributions that do not appear to correspond to field and field boundary layouts.

5.1.3.2. Aquatic organisms

Gergs et al. (2016) reviewed the scientific literature on ecological recovery potential of freshwater organisms and demonstrated that pesticide applications might have characteristics of both pulse and press disturbances. Particularly, frequent and long-term use of pesticides may result in press disturbances, and associated long-term community shifts, as was demonstrated for ditches in the fruit orchard region Altes Land in Germany (Heckman, 1981; Schäfers et al., 2006) and in streams in the agricultural regions of Braunschweig, Germany (Liess and Von der Ohe, 2005) and Brittany, France (Schäfer et al., 2007). In these cases, many aquatic species were presumably tolerant or became resistant, whereas others were eliminated from the habitat over a multiyear period of pesticide use. However, pesticide exposure in edge-of-field surface waters of agricultural landscapes often coincides with other types of environmental stressors (e.g. habitat destruction due to ‘clearing’ of macrophytes; eutrophication; hydrodynamic stress), thus, it may be difficult to distinguish the impact of pesticide exposure and other confounding environmental stressors in field monitoring programmes. To study the impact of multiple-pesticide stress while avoiding confounding factors, controlled mesocosm experiments may be used that focus on realistic application rates of the total package of pesticides used in crops (e.g. van Wijngaarden et al., 2004; Arts et al., 2006; Auber et al., 2011). These studies demonstrated that reducing the exposure concentration by mitigation measures may shift a press disturbance into a pulse disturbance, allowing ecological recovery to take place. The importance of internal and external recovery processes in pesticide-stressed aquatic ecosystems is, amongst others, demonstrated experimentally by Caquet et al. (2007), Maund et al. (2009) and Brock et al. (2010b).
5.1.4. Impact on food-web interactions and ecological recovery

Plant protection products can cause direct toxic effects on NTOs when applied in agroecosystems and spill over to edge-of-field surface waters. These direct toxic effects may initiate a shift in food-web interactions within communities that may lead to responses in more tolerant species (trophic cascades). For example, application of the insecticide chlorpyrifos in experimental freshwater ecosystems simulating the community of drainage ditches caused a decline in arthropod populations due to direct toxic effects, a decrease in abundance of Turbellaria (indirect effect due to a decline in prey populations), an increase in abundance of some Rotifera (indirect effect due to release of competition), an increase in biomass of periphytic algae (indirect effect due to release from grazing) and a decrease in macrophyte biomass (indirect effect due to shading by periphyton) (Brock et al., 1992).

Indirect effects and shifts in food-web interactions may enhance, mask or spuriously indicate direct effects caused by pesticide exposure, including pesticide mixtures (see e.g. Fleeger et al., 2003; Halstead et al., 2014). Declines in bird, butterfly and soil invertebrate populations in agroecosystems correlate well with agricultural intensification, including increased pesticide use, indicating that indirect effects of pesticides in agricultural landscapes cannot be ignored (Köhler and Triebskorn, 2013; Gibbons et al., 2014; Hallmann et al., 2014 and literature cited therein). Studies have shown that in experimental aquatic ecosystems with similar exposure regimes, no observed effect concentration (NOEC) values for the most sensitive endpoints were quite similar, irrespective of whether the studies were conducted with different nutrient contents or in different seasons. However, when exposed to similar, higher, concentrations, ecological recovery times were sensitive to nutrient status and season (Roessink et al., 2005; van Wijngaarden et al. (2006). Furthermore, indirect effects may (1) persist longer, and (2) be delayed in comparison to the direct effects from which they originate (e.g. Brock et al., 2004; Butler et al., 2010).

Indirect pesticide effects may have implications for ecological recovery of pesticide-impacted populations. Experimental studies in aquatic microcosms have demonstrated that manipulated intraspecific (Liess and Foit, 2010) and interspecific competition (Foit et al., 2012; Knillmann et al., 2012) and predation (Beketov and Liess, 2006) affected population recovery of sensitive crustaceans after pesticide exposure. van Wijngaarden et al. (2005) showed that insecticide application in plankton-dominated microcosms resulted in more pronounced indirect effects (algal blooms) and in longer recovery times of sensitive cladocerans under warm ‘Mediterranean’ conditions than under cool ‘temperate’ conditions, probably because of altered food-web interactions between cladocerans, rotifers (competitor) and algae (food). In a river contaminated by pesticides, Dorigo et al. (2010) showed that algae and microbes successfully colonised artificial substrates in pesticide-polluted stretches and when moved to clean stretches, these pesticide-tolerant periphyton communities resisted invasion of non-tolerant algae. This phenomenon was reported to be more pronounced in mature biofilms than in pioneer biofilm communities. Furthermore, pesticide-stressed invertebrates and vertebrates have been reported to be more prone to infectious diseases and parasites (Köhler and Triebskorn, 2013) and, if this occurs, it would likely hamper their ecological recovery.

As the above discussion illustrates, the rate of recovery of ecological entities or processes is context-dependent. It is influenced by (among other things) the degree to which the physicochemical environment and ecologically important food-web interactions are directly or indirectly altered by pesticide exposure, either alone or in combination with other (potential) stressors. The implications of this are discussed in greater detail below.

In conducting outdoor (semi)field experiments with pesticides (and other stressors), it is not possible to fully control a priori the test community and food-web interactions because of unpredictable environmental conditions not controlled by the experimenter (e.g. weather). The natural decline in exposure to a potential stressor may not always lead to an immediate start of ecological recovery, e.g. if more persistent indirect effects occur. So far, however, pronounced indirect effects and their possible impacts on ecological recovery of sensitive populations in experimental ecosystems stressed with pesticides have predominantly been observed in ecologically relatively simple microcosm test systems (Brock et al., 1992; van Wijngaarden et al., 2005; Foit et al., 2012; Knillmann et al., 2012). Brock (2013) argues that in ecologically more complex and diverse field communities, indirect effects due to exposure to a similar level of pesticide may be more efficiently dampened. In these structurally more complex communities, the higher number of taxa may provide a larger functional redundancy in that less-sensitive organisms (partly) take over the ecological role of the affected species. In relatively simple ecological systems, indirect effects are more pronounced due to lack of functional redundancy. This became apparent in studies comparing responses of a similar exposure
regime of the same insecticide (chlorpyrifos) in experimental test systems of different ecological complexity (see e.g. the following studies in the order of increasing ecological complexity of test system used: Brock et al. (1992); van den Brink et al. (1996); van Wijngaarden et al. (2005); Daam and van den Brink (2007); Zafar et al. (2011)).

Most studies that have linked indirect effects with increased recovery times have been in experimental aquatic systems. For terrestrial systems, most of the published links between indirect effects and recovery times are for bird populations (see e.g. Bright et al., 2008). For example, sawfly larvae (a key food item for some insectivorous birds) are susceptible to some insecticides and modelling suggested sawfly recovery from insecticide effects could take 7 years. In fact, sawflies (along with other herbivorous insects important in the diet of birds) are also themselves sensitive to availability of host-food plants which can be affected by herbicides. So, indirect effects could occur at different trophic levels (plant–insect and insect–bird) leading to delayed recovery at one trophic level affecting recovery at the next one up. However, proving whether lack of recovery is due to indirect and/or direct effects is challenging (Boatman et al., 2004).

Community ecology theory and modelling may help to predict the cascade of indirect and direct effects of potential stressors on biodiversity and ecosystem properties (see e.g. Relyea and Hoverman, 2006; Rohr et al., 2006), including the context-dependency of ecological recovery on impacted food–web interactions. Mechanistic effect modelling, for example using food-web models (e.g. Baird et al., 2001; Traas et al., 2004; De Laender et al., 2011) and population models (see e.g. Baveco et al., 2014; Gabisi et al., 2014; Galic et al., 2014; Kattwinkel and Liess, 2014), may be appropriate tools to evaluate the context-dependency of ecological recovery. Mechanistic effect modelling may not only help to better define the experimental setup of (semi)field experiments for assessing the ecological recovery of impacted populations but, more importantly, it can be used for spatial–temporal extrapolation of the concentration–response relationships and recovery rates observed in these test systems. An important prerequisite for the use of mechanistic models in prospective ERA is the selection of appropriate environmental scenarios. These scenarios should represent, as far as possible, the complexity of agroecosystems that are stressed by realistic application suites of pesticides and other assessed products.

5.2. Genetically modified organisms (GMOs)

The Directive 2001/18/EC on the deliberate release into the environment of GMOs (EC, 2001a) defines GMOs as ‘organisms, with the exception of human beings, in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination’. To date, the most well-known application of genetic modification technology is related to food/feed and fibre crops. The majority of currently cultivated genetically modified (GM) plants have been genetically modified to produce new proteins. Among other things, the proteins may improve the plant’s resistance to insect attack, confer tolerance to various herbicidal active substances, make the plant more nutritious, improve its processing properties, or act as markers to identify the plant. Genetic modification is also increasingly used for animals (e.g. fish, insects) and for biological and medical research, production of pharmaceutical drugs, vaccines, and experimental medicine. Further information is provided in Section B.2 of Appendix B.

5.2.1. Patterns of use in space and time

The period of exposure to potential genetically modified organism(s) (GMPs) depends on plant species, the growing period of the crop (i.e. the time from sowing to harvest), physiological characteristics of the GMP (e.g. which parts of the plant express the potential intended trait), and the ecology, behaviour and life-stage of the exposed NTOs. Since there is very little practical experience with commercial cultivation of GMP in the EU, there is no literature available on the pattern and use of GMPs in space and time in the EU as a whole. However, lessons from outside EU can be learnt and scenarios analyses can be used as a forecasting tool (EFSA GMO Panel, 2012). The only EU country where farmers grow Bacillus thuringiensis (Bt) maize on a considerable percentage of the total maize area is Spain. In Bt maize, protection against insect pests is achieved through the production of the insecticidal Cry toxins of the soil bacterium (Bt). Bt maize covered approximately 5–14% of the total maize acreage in Spain from 1998 to 2006 (Gomez-Barbero et al., 2008). Statistical data on adoption rates of Bt maize, recently obtained from the Spanish Ministry of Agriculture (http://www.magrama.gob.es/en/), show that the percentage of Bt maize from 2010 to 2013
increased from 22 to 30%. The total maize area in Spain has varied between years and regions (e.g. it was 353,600 ha in 1998 and 512,500 ha in 2006), but there is no indication that the distribution pattern and acreage of maize have changed with the adoption of Bt maize. Also, there is no indication that the farm management practices have changed with Bt compared to conventional maize, except that fewer insecticides are used by Bt maize farmers (Gomez-Barbero et al., 2008). In Spain, adoption by farmers, and hence the spatial distribution of Bt maize, is strongly influenced by economic factors (Gomez-Barbero et al., 2008), by insect pest pressure and by the efficacy of Bt maize to prevent damage compared to other protection methods.

5.2.2. Ecological recovery in European legislation

Potential adverse effects on humans, animals and the environment arising from the deliberate release into the environment of GMPs must be assessed case-by-case according to Directive 2001/18/EC (EC, 2001a, 2002). Although recovery is not explicitly mentioned as a compulsory part of ERA in the present EU GMO legislation (EC, 2001a, 2002), it is considered an integral part of the NTO risk assessment (EFSA GMO Panel, 2010b). Consideration of recovery assessment of cumulative long-term effects of GMOs is a compulsory part of the post-market environmental monitoring plan and report to be submitted by the consent holders to the competent authority (EC, 2001a, 2009a; EFSA GMO Panel, 2011). These monitoring reports are assessed by EFSA (EFSA GMO Panel, 2013b). Monitoring should be able to uncover environmental effects which could include long-term population and community effects on targets and NTOs. Should monitoring indicate adverse long-term effects, regulatory authorities would have opportunities to request mitigation measures to allow recovery from effects.

Recovery of NTOs is addressed indirectly by the mandatory management of resistance of target organisms that are sensitive to Bt plants. Plans for managing and monitoring resistance evolution in populations of the target organism are an integral part of the monitoring plan. One element of the present monitoring plan for commercial Bt maize growing in the EU is the obligatory establishment of non-Bt maize refuges by each grower. Maize fields larger than 5 ha should have at least 20% of the surface planted with non-Bt maize (refuge) that serves the target pest insects to maintain Bt sensitive subpopulations that can mate with the few remaining resistant individuals from Bt fields. It is recommended that target populations in refuges should not be managed with insecticides to keep the Bt-sensitive population as abundant as possible (EuropaBio, 2012). In the case of a cluster of fields with an aggregate area greater than 5 ha, the EFSA GMO Panel (2009) recommends that the refuge area of the aggregate fields should be equivalent to 20%, irrespective of individual fields and farm size. With this strategy, refuges also could reduce exposure of susceptible non-target populations in the crop and in field margins (e.g. non-target Lepidoptera) and would contribute to the recovery of susceptible NTOs from potential ecological effects, in addition to delaying the emergence of Bt resistance in the target pests.

5.2.3. Impact on food-web interactions and ecological recovery

According to Directive 2001/18/EC and Commission Decision 2002/623/EC on the deliberate release into the environment of GMOs (EC, 2001a, 2002), the objective of an ERA is, on a case-by-case basis, to identify and evaluate potential adverse effects of the GMO, either direct and indirect, immediate or delayed, on human health and the environment. Direct adverse effects can occur if the GMP itself affects the NTO, e.g. direct effects of a Bt toxin on a NTO, and is not the result of a causal chain of events. As Bt toxins have a narrow activity spectrum for insects, the large body of literature provides no indication that the currently grown Bt plants cause direct adverse effects on arthropods that are not closely taxonomically related to the target (Wolfenbarger et al., 2008; Naranjo, 2009; Romeis et al., 2014). The general principles of assessing adverse effects as stipulated in the Directive 2001/18/EC and Commission Decision 2002/623/EC apply across all GMOs, including microorganisms, plants and animals.

Typical indirect adverse effects of GMPs may occur due to food-web interactions. Potentially, organisms at higher trophic levels (e.g. birds, insect predators and parasitoids) can suffer from host and prey shortage if herbivorous arthropods are killed or sublethally affected by intoxicated or otherwise affected food sources with low nutritional quality (e.g. Romeis et al., 2004; Naranjo, 2009). The reduction of pests is the obvious goal of any crop protection method and often induces food
shortage, mainly to specialist organisms (e.g. host-specific parasitoids) (Romeis et al., 2006). As an example, meta-analysis from field studies have shown that populations of the specialist parasitoid of the European corn borer, *Macrocentrus grandii*, is strongly reduced in *Bt* maize (and in insecticide-treated maize) (Naranjo, 2009). Non-target herbivorous arthropods that exploit the crop may be partially sensitive to the GMP and can sublethally be affected which in turn may translate into altered nutritional quality for higher trophic level organisms. An example of such food-web interactions is the adverse impact of *Bt* toxin-affected lepidopteran larvae on fitness of their predator, the green lacewing larvae, *Chrysoperla carnea*, under worst-case scenarios in the laboratory (Hilbeck et al., 1998). However, such food-quality mediated effects, measured on individual levels of *C. carnea* larvae were not observed on population levels under field situations (Wolfenbarger et al., 2008; Comas et al., 2014; Romeis et al., 2014).

5.3. Feed additives

According to Commission Regulation (EC) No 1831/2003, feed additives are substances, microorganisms or preparations, other than feed material and premixtures, which are intentionally added to feed or water in order to perform, in particular, one or more of the following functions: satisfy the nutritional needs of animals with essential nutrients such as amino acids, trace elements and vitamins, favourably affect the characteristics of feed or animal products, favourably affect the colour of ornamental fish and birds, favourably affect animal production, performance or welfare, or have a coccidiostat or histomonostatic effect (Article 5(3)). Information on the types of feed additives, trends in their use in Europe and on exposure and effect assessment in ERA is provided in Section B.3 of Appendix B.

5.3.1. Patterns of use in space and time

Given the usage and physical properties of some feed additives, their concentration in the various compartments of the environment, where manure is disposed may be considerable. Indeed, they are used over extended periods of time, for large numbers of animals (terrestrial and aquatic organisms) and many additives, such as some trace elements, are poorly absorbed and therefore largely excreted and end up in manure. Fertilisation by manure is an important factor in agricultural systems and for impact on the adjacent natural aquatic and terrestrial ecosystems. For agricultural systems, spatial and temporal exposures to feed additives vary with environmental storage capacity, the quantity of manure applied to land (which depends on the animal density and maximum threshold allowed for manure/slurry applications in fields and these thresholds are defined by national legislation, usually based on nitrate), and the type and number of applications (which vary across the EU depending on manure/slurry availability and cropping time).

In fish farming systems, exposure to feed additives varies with the aquaculture regime (i.e. extensive, semi-intensive and intensive farming systems) and production methods (e.g. cages, raceways, ponds, tanks and recirculation systems) which are directly related to the fish species and the stage of its life-history (EFSA FEEDAP Panel, 2007). Therefore, to calculate predicted environmental concentrations (PECs) in the aquatic compartment, representative systems are selected (EFSA FEEDAP Panel, 2008). For mariculture systems, exposure varies with various environmental factors (e.g. water depth, water renewal, sedimentation rate, etc.) which are themselves highly variable in space. Such site-specific conditions of the surroundings of the aquaculture facility are generally not taken into account as product registrations do not have local restrictions.

Manure from terrestrial farm animals is spread on land and farmers may apply manure at various times during the growing season provided that on individual fields they do not exceed the nitrogen or phosphorus standards. Therefore, there is little room for recovery periods. Furthermore, over 1,000 feed additives are registered in the EU ranging from microbes to xenobiotics. Although the experimental information available to assess the safety to the environment is often limited, most compounds used as feed additives are not expected to be of ecotoxicological concern. Most additives are deposited or degraded in the animal and do not reach the environment. A large number of additives are natural compounds which are already present in the environment so that the use of the additives will not substantially increase environmental concentrations. Only a minority of the additives will end up in the manure and/or will have the potential to raise the background concentrations in soil, groundwater or surface water. Most feed additives have a limited toxicological potential.
5.3.2. Ecological recovery in the EU legislation

Recovery is not taken into account in the current legislation on the risk assessment of feed additives (Regulation (EC) No 429/2008) and it is not described in the EFSA Guidance on ERA of feed additives (EFSA FEEDAP Panel, 2008). An overview on recovery and SPGs for feed additives is presented in Appendix A. In ERA schemes for feed additives (EFSA FEEDAP Panel, 2007, 2008), the recovery option may be selected under certain conditions, although the magnitude and spatio-temporal scale of the acceptable impact are not operationalised in SPGs but assessed on a case-by-case basis.

5.3.3. Studies and data on ecological recovery from exposure to feed additives

Feed additives appear in the environment through excreta from the animals to which they were fed. For aquaculture, this means that exposure of the environment may be constant and in that case no recovery of any affected organisms would be possible. In marine fish farm operations, sea cages are regularly moved to allow the sediment underneath to recover from the deposition of organic material excreted by the animals. For feed additives used in mariculture, it is considered that bioturbation and faunal ingestion may account for recovery in the sediment (i.e. physical removal of settled particles and enhancement of bacterial action in seabed sediments).

5.3.4. Impact on food-web interactions and ecological recovery

Manure stands at the basis of terrestrial and aquatic food-webs. Adverse effects from feed additives on non-target species should not occur because the assessment of safety to the environment accepts no effects, based on PECs falling below thresholds of concern or effect data from a prescribed set of standardised ecotoxicity tests. It follows that if this protection goal is achieved there should also be no impact on food-web interactions and ecological recovery should not be an issue.

5.4. Invasive alien species (IAS) that are harmful to plant health

According to the definition proposed by the EC, IAS are ‘species that are initially transported through human action outside of their natural range across ecological barriers, and that then survive, reproduce and spread, and that have negative impacts on the ecology of their new location as well as serious economic and social consequences’. When IAS are of phytosanitary concern, the assessment of their harmfulness falls within the remit of the EFSA PLH Panel. In the impact assessment for IAS, ecological recovery is addressed through the concept of resilience of the ecosystem which is defined in the PLH Panel practice as the ecosystem capacity to cope with environmental change, through buffering, adaptation and reorganisation and maintenance of key ecosystem functions. Such adaptation may include changes in the species composition of ecosystems (EFSA PLH Panel, 2011, 2014). Information on trends in the extent of IAS in Europe and on exposure and effect assessment in ERA is provided in Section B.4 of Appendix B.

5.4.1. Patterns of presence in space and time

Invasive alien species are very different from other classes of potential stressors assessed by EFSA such as PPPs, GMOs and feed additives in that their occurrence in ecosystems is usually not planned and intentional, but is an unintentional and undesirable, but hard to avoid, side-effect of trade in plants and plant products. Hence, the entry of such IAS into the European territory occurs at haphazard places that are unpredictable because the rates of entry are very low, and any realisation of entry is the outcome of a chance process with very low probabilities for any given location, despite non-zero probabilities for the continent as a whole over a chosen time frame. From 1975 to 2000, the average yearly number of newly established alien species in Europe was 13 invertebrate species and 7 plant species per year (Hulme, 2009). The rate of entry of new organisms has increased over time, supposedly due (mostly) to increase intracontinental trade as well as changes in land use and climate (Hulme, 2009). Locations of entry are related to the size of the trade.

From initial entries, an invasive organism may spread over the European territory by natural dispersal mechanisms, e.g. aerial dispersal of plant spores or long-distance flight of insects, but usually intra-European trade is a much more important mode of spread within the EU territory. Ultimately, organisms will end up establishing in areas where the living conditions are suitable, primarily influenced by climate and presence of host plants. The time needed for the spread of an IAS over the continent
may vary from a single year (e.g. the historic invasion and major impact of the pathogen causing potato late blight in Europe in 1845; Fry, 2008) to decades (e.g. the Colorado potato beetle, *Leptinotarsa decemlineata* (Gripputo et al., 2005) or the corn root worm *Diabrotica virgifera virgifera*).

An exception to the rule that locations of initial entry and establishment are unintentional and therefore hard to predict is the release of alien species to control invasive plants (Hoddle, 2004; Seastedt, 2015). One insect and one pathogen have to date been used against invasive weeds in the EU (Biocatalogue based on Winston et al., 2014; http://www.ibiocontrol.org/catalog/, online). This contrasts with 176 insects used against insect pests in the same region according to Greathead and Greathread (1992). The practice of so-called ‘classical’ biological control by release of natural enemies from the area of origin of IAS provides a cost-effective way to control invasive plants, resulting in a potential for recovery of ecosystems impacted by IAS. The benefits of classical biological control of IAS in natural ecosystems have recently been summarised by van Driesche et al. (2010).

All in all, IAS occur across the continent in a wide variety of ecosystems, and their presence is an example of a ‘press disturbance’. That is, after initial entry and establishment, an invasive organism will usually stay. However, the impacts may decrease over time as native species respond to the new species as a target for feeding due to population increase, whereas genotypes of native species may be selected that can cope (e.g. compete) better with the new invader. These adaptations of ecosystems will result in a reduction of population densities of the invader over time, and, hence, to a reduction in impacts (Strayer et al., 2006).

5.4.2. Ecological recovery in the EU legislation

In the EU plant Health regime (Council Directive 2000/29/EC), currently under revision only few IAS are addressed as harmful organisms to plants and plant products. With regard to animal health, pests and diseases are also covered only partially by the various regulations and directives of the Animal Health regime. Other EU legislations also take IAS partially into consideration. This is the case of the Wildlife Trade Regulation (338/97) (restricting imports of endangered species including IAS), the Regulation on the use of alien and locally absent species in aquaculture (708/2007), the Birds Directive (2009/147/EC), the Habitats Directive (92/43/EEC), the Water Framework Directive (2000/60/EC) and the Marine Strategy Framework Directive (2008/56/EC). The last four legislative acts require the restoration of ecological conditions and refer to the need to take IAS into consideration. Nevertheless, most IAS remain unaddressed by this legislative framework.

With regard to the measures taken by the Member States against the IAS, the efforts are often fragmented and may not cover the whole area where the species are present. The preventive measures including early detection and the response to new threats are often insufficient. Measures taken at national level are not always effective considering the potential spread of an IAS through trade from one Member State to another.

In this context and as part of target 5 of the EU Biodiversity Strategy to 2020, in order to fill policy gaps in combating IAS a dedicated legislative instrument was developed with the EU IAS Regulation that came into force on 1 January 2015. The regulation should ensure appropriate prevention, early detection and rapid eradication of IAS and to provide a legal basis for the management of IAS that are widely spread.

In Article 18 of this regulation on the prevention and management of the introduction and spread of IAS, it is indicated that the Member States shall take proportionate restoration measures to assist the recovery of an ecosystem that has been degraded, damaged or destroyed by IAS of Union

concern. The measures should include (a) measures to increase the ability of an ecosystem exposed to disturbance to resist, absorb, accommodate to and recover from the effects of disturbance; and (b) measures ensuring the prevention of reinvasion following an eradication campaign.

5.4.3. Studies and data on ecological recovery from exposure to invasive alien species that are harmful to plant health

Ecological recovery is explicitly taken into account in the scenarios that are developed to assess IAS impacts on ecosystem functioning (Gilioli et al., 2014). Broadly, the assessment defines future times at which impacts on ecosystem entities and associated ecosystem services are quantified. Expert elicitation is used to assess the extent to which ecosystem functioning is likely to be affected over different time horizons and how ecological recovery mechanisms may mitigate the impact (Figure 5). This approach addresses uncertainty about the extent to which ecosystem resilience will mitigate or reverse an environmental impact of IAS. At one extreme, the trend in ecosystem modification may be irreversible (low or no resilience) (Figure 5A), at the other extreme, it may be completely reversible (high resilience) (Figure 5C). Assumptions about the resilience of the invaded environment are required to evaluate the impacts and the strength and type of resilience (ecological recovery at species, community or ecosystem functioning level) which need to be taken into account when setting an appropriate time horizon and estimating ecological recovery.

5.4.4. Impact on food-web interactions and ecological recovery

One of the key concerns about IAS is how they may affect native species, and how these effects may percolate through ecosystems via feeding relationships and competition. To assess effects on other species in an ecological network requires food-web modelling (De Ruiter et al., 2005). However, food-web modelling has to our knowledge not been used for impact assessment of IAS, except in theoretical cases (e.g. Chalak et al., 2010). The use of food-web models would require that they are predictive, and that their predictive quality has been proven in independent experiments. Much remains to be done to make food-web models useful for assessing impacts of IAS.

6. Species traits affecting ecological recovery

A species trait is a well-defined, measurable, phenotypic or ecological character of an organism, generally measured at the individual level, but often applied as the mean state of a species (McGill et al., 2006; Rubach et al., 2011). Traits reflect the morphological, physiological, behavioural, ecological or life-history expression of an organism’s adaptations to its environment that may also be regarded as properties of the taxon or population to which the organism belongs (Frimpong and Angermeier, 2010; Pey et al., 2014).
A trait is described as ‘functional’ if it influences the organism’s performance, and hence its fitness, under a given set of environmental conditions (McGill et al., 2006). A functional trait may also be referred to as a ‘response trait’ or ‘performance trait’, reflecting an organism’s response to environmental pressures, whereas traits that influence ecosystem processes or services are referred to as ‘effect traits’ (Pey et al., 2014).

Traits can be measured in several ways, using different scales, i.e. nominal, ordinal or continuous, depending upon the property being measured (Schmera et al., 2014). For example, whether the feeding strategy ‘predator’ applies to an organism could be a dichotomous (yes/no) variable with a binary answer (yes = 1, no = 0) whereas body size of an organism could be measured as a continuous variable. The way that traits are measured is important for the type of analysis that can be performed, and how the ‘trait state’ of a species or community, i.e. its mean or modal trait, can be expressed. Statistical pitfalls in the literature include the arbitrary assignment of numeric identifiers to nominal trait classes and the analysis of ordinal classes as though they are continuous variables (Schmera et al., 2014).

It has been recognised for nearly a century that measurement of functional traits can provide valuable information on how organisms are likely to respond to their environment (e.g. references in Culp et al., 2011; Rubach et al., 2011; van den Brink et al., 2013; Pey et al., 2014) and taxon-trait matrices have been developed widely to classify different groups of organisms according to the functional traits which they exhibit (e.g. Usseglio-Polatera et al., 2000; Schäfer et al., 2011; Ippolito et al., 2012; Heino et al., 2013; Pey et al., 2014; Schmera et al., 2014). More recently, the potential value of trait-based approaches for predicting responses of organisms to anthropogenic stressors, including the integration of trait-based approaches into ecological risk assessments has been recognised (e.g. Barnthouse, 2004; Baird et al., 2008; van den Brink et al., 2013). However, as explained below, trait-based risk assessment faces a number of challenges and there are still extensive knowledge gaps concerning the influence of traits on species sensitivity to stressors and recovery. When considering the meaning of ‘trait’, it should be noted that the EFSA PLH Panel used in its ecological risk assessment of the apple snail (EFSA PLH Panel, 2014) the concept of ‘traits’ of SPUs.

This is a more abstract usage of the term trait, and is not so much related to recovery as to the provision of ecosystem services by ecological entities in the impacted ecosystem.

6.1. Generic properties of species traits influencing internal and external recovery

van Straalen (1994) illustrated with a conceptual model how population vulnerability is driven by a combination of external exposure, intrinsic susceptibility and population sustainability. ‘Population sustainability’ refers to the potential for a population to recover from any toxic effect, and can be characterised by two types of traits – traits that are related to demography and traits related to recolonisation. Liess and Von der Ohe (2005) and Rubach et al. (2011) elaborated on van Straalen’s conceptual model (van Straalen, 1994), providing lists of demographic and recolonisation traits relevant to the risk assessment of chemicals. For field data, a combination of traits was successfully applied to link exposure to community composition with the SPEAR (SPecies At Risk) approach (Liess and Von der Ohe, 2005; Schäfer et al., 2012) and to link exposure to biodiversity (Beketov et al., 2013).

Demographic traits are those that influence the population growth rate and ultimately drive population densities and age distributions. These are relevant to external recovery as well as internal recovery, as source populations with adequate densities and age structures would be required for initiation of recolonisation; and, following recolonisation, (potential) stressor-receiving patches would need to be fully repopulated. The following demographic traits are relevant to the assessment of population recovery (Liess and Von der Ohe, 2005; Rubach et al., 2011):

- life span;
- survival to reproduction;
- generation time (i.e. the interval between reproductive events);
- voltinism (i.e. the number of reproductive events per year);
- number of offspring (i.e. clutch size per reproductive event).

Recolonisation traits are traits that govern the ability of an organism to reach a new habitat. The following recolonisation traits are relevant to the assessment of external population recovery (Liess and Von der Ohe, 2005; Rubach et al., 2011, with additions):
• dispersal capacity (i.e. the ability of a species to disperse to a new area, including the timing of dispersal periods);
• distribution patchiness (i.e. degree of connectedness or fragmentation of the populations);
• territorial behaviour (e.g. intraspecific competition) – limits a species’ ability to move freely in the available space;
• trophic level;
• diet specialisation;
• dispersal mode (i.e. active or passive);
• reproduction mode (e.g. sexual or parthenogenetic);

Other traits: The classifications proposed by Liess and Von der Ohe (2005) and Rubach et al. (2011) are useful, but there are other traits which are also important for recovery which are not easily classified as recolonisation or demographic traits. These primarily include local movement and foraging behaviour. A particular example is pollinators that may seek out nectar sources on a daily basis, and may select areas treated with potential stressors as a result. Similarly, species with wide home ranges may come into contact with multiple stressors in space and time, potentially influencing impacts of the potential stressors and recovery. Other examples of behavioural traits that might increase or decrease exposure to potential stressors are burrowing and canopy foraging. A resistant life stage is an example of a physiological trait that may influence exposure to potential stressors.

The examples given above for demographic and recolonisation traits, and below for specific traits for focal taxa, are intended to illustrate the potential value of a trait-based approach. In reality, research studies do not always assess the same traits and the rationale for selecting particular traits may depend on pragmatic considerations such as the availability of data or expertise as well as the context of the assessment (e.g. the type of stressor being studied). The number and type of traits required to predict an organism’s response can be very variable across studies. For example, Ippolito et al. (2012) found that more complex behavioural traits were better predictors of the sensitivity of freshwater macroinvertebrates to specific pesticides than were ‘traditional’ traits related to pesticide uptake capability. It should also be borne in mind that some traits may be autocorrelated (e.g. biomass and body size).

6.2. Some examples of specific traits for focal taxa

In the context of ERA, focal bird species have been defined by EFSA as bird species that represent others in a crop resulting in realistic worst case for ERA due to their potential higher level of exposure to pesticides (Dietzen et al., 2014). Because in the example provided by Dietzen et al. (2014) focal taxa are selected according to exposure rather than recovery, it is, within the context of this scientific opinion, important to consider the traits of focal taxa likely to determine their recovery.

Species which are the least able to recover following use of a potential stressor may possess multiple traits that predispose them to poor recovery. For example, among carabid beetles, species which have poor dispersal ability (are flightless), have only one generation per year (univoltine), and spend their entire life-history in pesticide-treated fields (i.e. have limited opportunity for external recovery) are the least able to recover from annually repeated insecticide applications (Vickerman, 1992). Similarly, aquatic invertebrates with a relatively long generation time, low dispersal ability and that complete their whole life-history in water have been identified as potentially vulnerable taxa in isolated chemically stressed aquatic ecosystems (Liess and Von der Ohe, 2005; Gergs et al., 2011; Galic et al., 2012). In contrast, in the tiered approach to ecological risk assessment, standard test species often have multiple traits that would favour more rapid recovery. For example, the aquatic invertebrate *Daphnia* and the soil invertebrate *Folsomia candida* have high intrinsic rates of increase, short-generation times, and a short-time interval for first offspring, which makes these species easy to rear and large amounts of data can be gathered quickly. However, such ‘r-selected’ species are much less susceptible to stress at the population level than species with different life-history variables (Stark et al., 2004).

Although the above examples illustrate that certain functional traits could be potentially valuable for predicting recovery of organisms following responses to stressors, there are a number of challenges facing the development of trait-based recovery assessment in ERA. Schmera et al. (2014) remarked that ‘characterising taxa by their traits is a challenging task in ecology due to high heterogeneity of organisms, remarkable variation within taxa, and gaps and uncertainties in our knowledge’. Key challenges facing the adoption of trait-based approaches for assessment of recovery are:

- **Methodological variation.** To a large extent, conclusions about trait-based community patterns and the responses of traits to environmental factors are likely to depend on the
methods used (Heino et al., 2013). For example, in a review of studies on the responses of soil invertebrates to environmental changes, Pey et al. (2014) found that the list of traits assessed in each study differed considerably, even when studies were assessing a similar type of environmental change. A standard vocabulary for supporting the collection of data on traits (see below) could improve the efficiency of data collection. In particular, it is important that traits are selected which actually drive a species’ sensitivity to a stressor and influence the species’ potential for recovery (e.g. Rubach et al., 2011).

- **Context-dependency of traits.** Species’ functional traits vary across large geographical gradients in near-pristine systems (Heino et al., 2013) meaning that the predictive ability of a given trait (or set of traits) may not necessarily apply in all geographical locations (van den Brink et al., 2013). It cannot necessarily be assumed that traits which are predictive of an organism’s response in one ecological context will be predictive also in other contexts. For instance, the sensitivity of a species to stressor(s) and its ability to recover could depend upon its population state and life stage at the time of the stressor perturbation, as well as other biotic factors (e.g. trophic interactions) and abiotic factors (e.g. weather and the mode-of-action of the stressor). An important point to consider is that data collected on functional traits may be measured in non-stressed or pristine environments, although the sources of trait data in the literature are not always clear, and there is uncertainty as to whether traits measured under unperturbed conditions would be predictive of species sensitivity, or recovery ability, under the influence of stressors.

- **Ambiguous and inconsistent terminology relating to traits.** Lack of consistent terminology has led to incompatibility of historical databases (van den Brink et al., 2011), leading to calls for a defined nomenclature (Baird et al., 2011). Although there has already been a great deal of work on traits, the information is scattered throughout the literature, databases and undiscovered sources; further progress will require improved accessibility to and integration of these existing data, taking advantage of developments in semantic metadata applications (Baird et al., 2011). Schmera et al. (2015) have proposed a unified terminology to ensure that future data collection is conducted in a standardised and efficient way.

- **Inadequate data availability.** The trait-based approach is highly dependent on the availability of biological and ecological information (van den Brink et al., 2011, 2013). For example, Usseglio-Polatera et al. (2000) were unable to identify sufficient data on fecundity and dispersal potential of benthic freshwater invertebrates to enable these traits to be investigated. Historical databases have been criticised as being of low quality (van den Brink et al., 2011). In some cases, trait data may be based on expert opinion rather than empirical measurement, and it is important that this is clearly documented.

- **Measurement of traits.** The appropriate quantification of traits may be challenging, and certain traits may require ‘fuzzy coding’ approaches to quantify the extent of association of a species with the trait (e.g. Usseglio-Polatera et al., 2000). Furthermore, the measurement scales for trait data are often inappropriately analysed statistically (e.g. ordinal scales are treated as though continuous) (van den Brink et al., 2011; Schmera et al., 2014). Quantification of physiological traits at a molecular level may be particularly challenging (Rubach et al., 2011), and seeking relationships between traits and sensitivity endpoints depends on the endpoint being assessed, implying that the careful selection of measurement endpoints is crucial (Rubach et al., 2011; Ippolito et al., 2012).

- **Autocorrelation and redundancy.** When interpreting traits, it should be borne in mind that some traits may be correlated and that they cannot be combined at random (Culp et al., 2011).

Strengths of the trait-based approach (van den Brink et al., 2011) include that the traits add mechanistic and diagnostic knowledge, require no new sampling methodology, are based on an old tradition and can supplement taxonomic analyses.

Due to the aforementioned challenges, no formal frameworks have yet been developed for integrating trait-based approaches for assessing recovery into ERA. van den Brink et al. (2013) outlined a conceptual framework for how trait-based approaches could be incorporated into ERA for chemicals but although this framework recognises the importance of recovery, the framework does not expand on exactly how recovery would be assessed. In principle, traits relevant for population recovery could be determined from experiments and would then inform population models (van den Brink et al., 2013), although the feasibility of conducting the numerous experiments that might be
required to provide the trait data is not clear (and would likely depend upon the taxonomic groups in question, as some taxa have poorer existing data availability than others).

An example of a framework approach that could, potentially, be adapted to assess recovery of individual species based on functional traits, is provided for farmland birds by Butler et al. (2007). However, the recovery option is not relevant to farmland birds as no adverse stressor impacts on bird populations are permitted. Therefore, this example is illustrative only, on the basis that its principles might be applicable to species for which the recovery option is relevant. Butler et al. (2007) developed a matrix of the ecological requirements of individual farmland bird species based on their diet, foraging habitat and nesting (i.e. reproduction) habitat. Each of these requirements was assessed dichotomously (1 = yes, 0 = no). The requirements were subdivided temporally (summer, winter), spatially (for each of diet, foraging habitat and nest site the location was recorded as in crop, in margin, and/or in hedgerow) and by diet type (five types of diet were considered). The species’ reliance on farmland was also recorded. This gave a matrix of 38 columns of binary trait values for each of 62 species. The principle of the risk assessment approach was to identify which of the 38 traits would likely be affected by a given stressor, i.e. to identify the spatial and temporal overlap between the stressor and the species’ ecological requirements. Butler et al. (2007) demonstrated that risk scores based on this approach, although seemingly crude, accurately predicted the conservation status of all the bird species considered when the effect of different types of agricultural intensification were applied to the matrix. This approach was feasible because detailed population trend data for farmland birds were available over a relatively long period (several decades). The approach could, in theory, be applied to population models to predict future recovery patterns. However, a major limitation would be the availability of sufficient robust population data if taxa other than birds are to be considered. All the trait associations employed in this example could be represented dichotomously, enabling a relatively simple and transparent calculation of risk scores. The matrix-based approach, which effectively provides a coarse categorisation of species’ niche space, is also a rational basis for identifying and selecting focal species (Butler et al., 2012).

In summary, although trait-based approaches appear promising for assisting assessments of population recovery in ERA, there are several challenges that would need to be overcome, such as lack of relevant data, inconsistency of terminology, and differences in the way traits have been selected in previous studies. Key requirements are agreement on a standard vocabulary that is independent of the type of organism (Pey et al., 2014; Schmera et al., 2015), further standardisation of data collection and the identification of existing relevant data sets (Baird et al., 2011). This would help to identify genuine knowledge gaps where further experimental research may be needed to provide adequate data.

6.3. The contribution of genetic diversity to recovery

Genetic diversity in populations allows them to adapt to stresses. Adaptation may lead to the enhancement of a species’ fitness to a certain potential stressor by increasing, for instance, its ability to withstand exposure to a toxicant. Tolerance can be acquired by physiological acclimation or by genetic inheritance. The latter is a process of genetic adaptation of the population occurring under the selection pressure exerted by the exposure to a potential stressor. It takes multiple generations and involves the gradual replacement of sensitive genotypes within the population as a result of their reduced survival and reproductive output under stress by more tolerant or resistant genotypes. As a result, the population as a whole will be better able to withstand the same stress if it occurs again. In ecotoxicology, this process is the basis of the pollutant-induced community tolerance concept (Blanck et al., 1988). There are numerous examples in the literature of such resistance development through selection, e.g. the development of resistance in insects, mites and plant pathogens to the pesticides used to control them (Hardman et al., 2000; Hoy, 2011). Likewise, following their exposure, plant populations can adapt to heavy metals. In populations which are more resistant to stress, recovery may be faster because the initial impact of the stress is smaller, and the individuals may be better able to cope with the environmental stressor at an individual level. As a result, a population may return to its NOR faster, and ecological functions may be also restored. Genetic diversity does not guarantee that a species will be able to adapt as it depends on the presence of resistance-conferring genes in the gene pool. However, ecological insurance27 (Loreau et al., 2001) implies, as a general

27 The ecological insurance hypothesis suggests that biodiversity supplies an ‘insurance’ buffering the effect of environmental changes on ecosystem services. This hypothesis considers that functionally redundant species respond differently to these changes but overall the functional community which they formed, continue to provide the ecosystem service (Loreau et al., 2001).
rule, that the more genetically diverse a population is, then the better will be its capability to adapt to stressors.

When a population has been reduced in size by exposure to a stressor, some important genetic resources necessary to cope with environmental fluctuations and multiple exposures to other types of stressors may be removed. Adaptation to multiple stressors through selection is therefore much more difficult for species than adaptation to a single stressor, and it takes much more time for such selection to multiple stresses to occur (Vinebrooke et al., 2004). Adaptation of a population was shown to increase its susceptibility to other stressors suggesting that changes that have conferred resistant to toxicants carry a cost decreasing its fitness in other contexts (Meyer and Di Giulio, 2003). However, adaptation to different toxicants having similar chemical structure and mode-of-action is more likely to occur by sharing genetic processes responsible for cotolerance (Blanc, 2002).

In vertebrates, to avoid adverse consequences of genetic drift and inbreeding and for maintenance of self-sustaining and genetically viable populations, the minimum effective breeding population size is estimated to be between 500 and 5,000 individuals, depending on a range of demographic and environmental factors. Many vertebrate populations do not meet this minimum effective population size (Brown et al., 2009). In these cases, populations would be considered endangered and, if exposed to potential stressors, then their ability to recover may be affected by inbreeding. In conservation management of endangered species which already occur in small populations, population viability analysis is a common tool to investigate species extinction risk or recovery potential (Lindenmayer et al., 1993), although the actual implementation of population viability analysis has been criticised and could be improved (Beissinger and Westphal, 1998; EFSA Scientific Committee, 2016).

An example of adaptation occurs when organisms such as microbiota are selected to specifically deal with a potential stressor such as a chemical through metabolism. Bacterial populations may develop a capacity towards rapid biodegradation of pesticides which are used as nutrients and energy sources for their growth (Udikovic-Kolic et al., 2012). This genetic adaptation results in a faster microbial breakdown of the pesticides, thereby diminishing their environmental persistence, and accordingly faster recovery of other species and ecological functions.

Adaptations to stress may be costly, but not always. Examples of both presence or absence of fitness costs abound in the literature. For instance, the acquisition of resistance of natural populations of Daphnia longispina exposed to heavy metals was not associated with fitness costs (Ribeiro et al., 2012). On the contrary, the acquisition of tolerance of Daphnia galeata to the pyrethroid insecticide fenvalerate was shown to cause a decrease in the intrinsic population growth rate revealing the fitness cost of this adaptation (Tanaka and Tatsuta, 2013). If an adaptation is costly, the fitness of an adapted population in the absence of the stressor would be less than of a population that has not been exposed to the stressor and has not been under selection for resistance. It is worth noting that the lower fitness of adapted populations can lead to counter-selection, i.e. selection pressure against the genetic adaptation, which leads to loss of the adaptation and its associated cost, and restoration of the population fitness (Changey et al., 2011).

Laboratory studies and simulation modelling of interactions between two species of aquatic invertebrates (Culex quinquefasciatus and Daphnia magna) have suggested that genetic adaptation to toxicants is affected by predation and competition. According to these findings, interspecific interactions could delay the development of pesticide resistance (Becker and Liess, 2015). However, further studies on a wider range of species, in both aquatic and terrestrial compartments, would be needed to clarify the wider relevance of these findings and help to determine how information on biotic interactions could support assessment of the recovery potential of ecological entities.

7. Specific features of agricultural landscapes that affect ecological recovery

Some biological populations may be largely dependent on agricultural landscapes. Agricultural landscapes for a large part consist of patches of landscape (fields) directly used for agriculture, but include surrounding natural or seminatural landscape elements (e.g. field margins, hedgerows, drainage ditches, streams) that may also be impacted by agricultural activities.

7.1. Terrestrial components of agricultural landscapes

In terms of risk assessment of assessed products (e.g. pesticides) in agricultural landscapes, it is important to make a distinction between the area of treated fields and different types of non-treated
areas, as well as the spatial configuration of these areas (and any temporal change in these), as this may vary considerably in different parts of Europe. Potential stressors may occur in landscapes which range structurally from very homogenous with few non-agricultural habitats to highly heterogeneous with multiple habitat types (e.g. Figure 6). Even within the same structural habitat type the land use can vary, for example it may comprise a monoculture or multiple crops. Such spatial variation influences the likelihood of concurrent events (e.g. pesticide spraying in multiple fields) which in turn affects the exposure to potential stressors of the ecological populations and communities which are present.

Figure 6: Four different European agricultural landscapes

In terrestrial agricultural landscapes, the non-target populations for which recovery is to be assessed may be wholly or partly present in the fields where and when the assessed product is applied. Individuals of these populations are therefore exposed directly, or may be in locations where resources are directly affected (e.g. birds eating insects that have been killed by insecticides or removed by herbicides (Boatman et al., 2004)).

The scale at which the evaluation of recovery takes place will depend upon the definition of the population used (in turn dependent upon the SPG), but will also be influenced by the landscape composition, structure and management. If within-field impacts are being assessed (e.g. for soil-dwelling Collembola), then the relevant spatial scale is the microhabitat variation within a field, but for most organisms a larger scale is needed. Non-target organisms comprise an extremely diverse assemblage of taxa with very different life-histories, ecologies and behaviours, which affect their distribution in, and use of, the landscape. As individuals, some species, such as birds, exploit habitats at a very large-spatial scale, whereas others are more restricted, e.g. spiders. For species that do not move between field and off-field as individuals, and where dispersal at scales greater than the size of treated field is not a feature of their ecology, then traditional approaches to separation of in-field and off-field assessment of recovery are useful. However, the majority of species do not fit this profile. The scale at which recovery should be considered will depend upon the species and the regulatory
question assessed (see Section 9.3.1). Key terrestrial landscape aspects are the size of fields, the landscape heterogeneity (e.g. many or few seminatural habitats between fields, variation in seminatural habitat types), crop diversity, and the heterogeneity in space and time of farming activities.

The precise nature of the landscape structure is also important when considering recovery of organisms that move between in- and off-field areas. Fields are typically surrounded by narrow strips of non-cropped habitats (ditch banks, hedges and grass banks). These habitats are subject to action at a distance but may also be exposed to assessed products. Manipulation of habitats can be used to facilitate recovery. For example, Dalkvist et al. (2013) evaluated the impact of an endocrine disruptor on vole populations and found that habitats to support source populations of voles near treated orchards reduced overall population impacts and facilitated recovery compared to the same area and type of habitats situated away from the treated area.

Many of the terrestrial organisms present in agricultural habitats have good dispersal abilities and other life-history characteristics that allow them to cope with anthropogenic disturbances. This results in complex spatial dynamics, but also means that the timing and spatial extent of the potential stressors is important in determining population level impacts and recovery. Calculations with a basic metapopulation model indicate that to maximise impact on a pest, fields should be treated simultaneously over a large area (Levins, 1969). Conversely to minimise impact on NTOs and their ecological functions, the opposite may apply (Ives and Settle, 1997). The impact of a particular potential stressor is not easy to assess as there are confounding effects of multiple stressors which may dramatically alter the system state. Synchronised management (e.g. soil cultivation, pesticide treatment) may occur on a larger or smaller scale within a particular agricultural landscape, and this can be of vital importance to the impact on and recovery of non-target populations when a potential stressor is also introduced. There is, therefore, an important interplay between homogeneity of agricultural practices over spatial scales, and the potential for recovery from stresses. Conversely, for high mobility species, or for stressors that bioaccumulate, organisms may be exposed to a wider range of potential stressors (types and concentrations) in highly heterogenous landscapes, leading to higher risks. Landscape features therefore may need to be assessed when assessing the potential for external recovery. This is clearly problematic as it indicates that not the assessed product or species per se may be decisive for the recovery from impact, but the properties of the environment in which these products or species are having an effect. This is challenging from a regulatory perspective.

7.2. Surface waters in agricultural landscapes

Agriculture requires the availability of freshwater resources and permanent and/or ephemeral drainage ditches, ponds and streams are typical aquatic habitats of European agricultural landscapes. The densities and types of surface waters in agricultural landscapes, however, differ considerably between different agricultural landscapes of Europe. For example, in the undulating agricultural landscape of the Dutch province of Limburg, the estimated surface area of more or less permanent water courses is approximately 500 m²/km² (for a large part streams, but also ditches), whereas the proportion of surface water is approximately 73,000 m²/km² (mainly ditches) in the fen area of the province of Zuid-Holland (van der Gaast and van Brakel, 1997) (Figure 7).

The land use of terrestrial components of agricultural landscapes drained by streams, ditches and ponds not only impacts species composition but also life-history characteristics of aquatic species in these systems. For example, in Dutch drainage ditches located in landscapes with a land use dominated by nature conservation, the percentage of individuals of aquatic macroinvertebrates with a semi- and/or univoltine life-history (generation time ≥ 1 y) is higher than in ditches in landscapes dominated by agricultural fields. In contrast, in ditches bordering agricultural fields where environmental stress (e.g. fertilisers, pesticides, clearance regimes) is likely higher, the bivoltine (two generations per year) and multivoltine (more than two generations per year) organisms have a larger share in the aquatic communities, indicating that they are adapted to an overall higher level of disturbance (e.g. Brock et al., 2010a). This phenomenon has also been observed when comparing biological traits of stream invertebrates between landscapes that differ in intensity of agricultural practices (e.g. Liess and Von der Ohe, 2005; Schäfer et al., 2007).
Although not often directly applied in aquatic ecosystems, assessed products used in agriculture may be emitted to edge-of-field surface waters, e.g. by means of spray drift, surface run-off, drainage and accidental spills. Within this context, it is important to note that the area of agricultural landscape that is drained by different types of edge-of-field surface waters varies considerably. The surface area drained by streams overall is considerably larger than that of ponds, whereas ditches have an intermediate position. In contrast, the retention time of water (i.e. the average length of the time that water spends in the system) increases when going from streams to ditches to ponds. The implications are that stream communities may become exposed for shorter periods to individual potential stressors (which would tend to decrease impact), but also may suffer a larger number of assessed products applied in the area (which would tend to increase impact). In contrast, pond communities may become exposed for longer periods but to fewer assessed products as they drain a relatively small surface area. Ditches have an intermediate position, dependent on the surface area that they drain and the water flow in these systems. Furthermore, in interconnected larger surface waters such as streams and ditches it is easier for mobile aquatic organisms to avoid local exposure or to recolonise previously impacted stretches than in ponds. Consequently it will be easier to make a distinction between internal and external recovery in isolated lentic (still water) ecosystems like ponds than in interconnected lentic (e.g. drainage ditches) and lotic (e.g. streams) ecosystems. In theory, both the potential of faster recovery following exposure to a potential stressor and the chance to suffer multiple potential stressors will be ranked in the order streams > ditches > ponds.

Gergs et al. (2016) conducted a literature review on the ecological recovery of aquatic organisms following the exposure to chemical and physical environmental stressors in both field and semifeild studies. They demonstrated that organisms within the same taxonomic group had overall faster ecological recovery in lotic (flowing water) than in lentic (still water) aquatic ecosystems (Figure 8).

Gergs et al. (2016) also included the colonisation of newly constructed freshwater ecosystems, since this was considered a worst-case scenario with no possibility of internal recovery. The variability in recovery times within taxonomic groups shown in Figure 8 is high. This can be explained by differences in species traits (related to voltinism and dispersal abilities) and also by the specific differences in modes-of-action of the different environmental stressors, the spatial and temporal scales of the exposure regimes studied, the landscape properties relating to buffer strips bordering agricultural fields, the connectivity of aquatic ecosystems, and the presence of nearby refuge areas. The importance of the presence of buffer strips and forested upstream in mitigating effects and facilitating recovery of stream invertebrates was demonstrated recently by Bunzel et al. (2014).

7.3. Spatial and temporal characterisation of agricultural landscapes

The above shows that the spatial and temporal scales cannot be ignored in ERA. When considering recovery in a European context, it must be realised that landscape structures differ enormously both
within and between different EU countries (e.g. see Hazeu et al., 2011). These differences manifest themselves in the composition, arrangement and grain of heterogeneity. Landscapes across Europe have been classified and mapped in many ways (e.g. Mucher et al., 2010), and in many countries national or regional GIS data are available (e.g. see the EU agri-environmental indicator landscape28 and related databases to assess landscape structure in the EU29). For example, in Denmark the ‘Animal, Landscape and Man Simulation System’ (ALMaSS) project (http://ccpforge.cse.rl.ac.uk/gf/project/almass/, online) uses a number of national datasets together with information on agricultural

Figure 8: Recovery times for selected taxonomic groups in lentic (i.e. still water; panel A) and lotic (streaming water; panel B) freshwater ecosystems following exposure to chemical and physical environmental stressors

Boxes represent quartiles and whiskers indicate 95% confidence limits. Dots represent data n < 3. Taxonomic groups are sorted according to their median time to recovery.

Source: Gergs et al. (2016)

subsidy claims to map landscapes in sufficient detail to be used for large scale landscape population modelling (e.g. Dalkvist et al., 2009; Topping, 2011). These data allow modelling of land cover in 1-m high resolution, and also enable land management to be classified according to farm typologies. A general approach to detailed landscape and farming data integration is provided by Topping et al. (2015) which works by combining data in different formats and resolutions. However, landscapes across the EU have been classified in various ways and with different levels of resolution and the accessibility of data at regional and national scales vary across the EU. This will limit the potential for harmonisation of the resulting maps and farming classifications.

8. Usefulness of experimental and modelling approaches to address ecological recovery

8.1. Experimental approaches

Ecological risk assessment generally aims to preserve the long-term viability of populations, i.e. population sustainability (EFSA PPR Panel, 2010; Hommen et al., 2010), although approaches emphasising ecosystem functioning and ecosystem services also exist (EFSA PLH Panel, 2011). An assumption is made in the risk assessment of chemicals that the short-term population effects on invertebrates will have no long-term consequences if population sustainability is not reduced (Hommen et al., 2010). Higher tier approaches for assessing sustainability have been developed, including semield or field studies at population or community level, such as aquatic microcosm or mesocosm studies and terrestrial model ecosystem studies and NTA and earthworm field studies. Each of these approaches has limitations, however, and there is no ‘perfect approach’ (Table 1). A key reason for this is that ecosystems are spatially heterogeneous and it is very difficult to capture all relevant ecological elements, including sources of external recovery, unless a large-spatial scale is employed which is very costly.

In addition to the cons identified in Table 1, sampling methods may be selective with regard to traits (e.g. pitfall sampling for terrestrial invertebrates does not catch aerially dispersing species) and this could apply at any spatial scale (i.e. semield, field or landscape).

It is easier to sample populations of typical water organisms in a non-destructive way, meaning that aquatic mesocosms can often be larger and more realistic than terrestrial model ecosystems. As terrestrial model ecosystems usually need to be sampled destructively to study treatment-related effects on soil populations, more replicates may be required. These, then, need to be smaller for logistic reasons. In smaller test systems the detection of treatment-related population responses is often practically possible only for smaller organisms with a relatively short generation time. Recovery of species with complex life-cycles may be captured more easily in larger experimental ecosystems than in smaller ones. However, in general, lentic aquatic mesocosms do not capture passive drift of organisms from upstream sources. This may be captured in lotic mesocosms (Berghahn et al., 2012); however, most mesocosm studies are lentic due to the technical difficulties in constructing replicates of lotic systems.

A challenge in terrestrial field studies is that some organisms that are vulnerable to agricultural chemicals have spatially disjunct populations meaning that they may not be adequately represented even in a replicated field study (e.g. Collembola; Frampton, 1999). Soil microorganisms are known to be diverse and heterogeneously distributed making them difficult to use as a potential indicator to estimate the ecotoxicological impact of potential stressors. However, this difficulty might be tackled at a higher level of taxonomic resolution or at functional level (Imfeld and Vuilleumier, 2012; Philippot et al., 2012). Where assessment of recovery is of interest, the agricultural chemical regime may be specifically manipulated at a site where the species is known to be present (e.g. Frampton, 2001a). Manipulative studies can also be designed to assess whether invertebrate recovery in a field occurs from internal or external sources (Frampton et al., 2007). However, these specific types of recovery studies are relatively uncommon and not employed routinely in risk assessments.

The reliability of the conclusions drawn from an experimental ecosystem study (microcosm, mesocosm or terrestrial model ecosystem experiments) depends on the statistical power of the test that is used to demonstrate treatment-related effects. It is possible to estimate an indicator of the statistical power of a semield test a posteriori: viz. the minimum detectable difference (MDD). The MDD defines the difference between the means of a treatment and the control that must exist in order
to conclude that there was a significant effect (see e.g. Environment Canada, 2005). The MDD is affected by three factors: (1) the number of replicates, (2) the variance of the measurement endpoints, which can be separated into the inherent variability between the replicates and the variability caused by the sampling methods, and (3) the selected type I error level (an error level of 0.05 is usually selected as default). The statistical power of semi-field tests can to a large extent be increased by improving the sampling and quantification methods rather than by increasing the number of replicates only. A proposal on how to evaluate treatment-related effects and recovery of populations in aquatic micro- and/or mesocosm tests using the MDD classes given in EFSA PPR Panel (2013a) is provided in Brock et al. (2014).

When considering the analysis of data on ecological recovery, it is important to distinguish between statistical significance and biological relevance (EFSA SC, 2011). It is recommended that the nature and size of changes or differences that would be considered biologically relevant should be defined in advance.

In its scenarios for apple snail impacts on ecosystems, the EFSA PLH Panel used temporal scales of the impact (and recovery) extending from 5 to 30 years. Evidently, in this example, experimental approaches are not useful for prospective risk assessments. In such a case, the assessment must be made either by using models (if validated models are available) or by eliciting expert opinion. A rigorous approach to the elicitation of expert opinion is essential (EFSA, 2014b).

Table 1: Pros and cons of experimental approaches to address ecological recovery. The different experimental approaches are presented in the order of increasing ecological complexity

<table>
<thead>
<tr>
<th>Tier of testing</th>
<th>Pros</th>
<th>Cons(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory population tests</td>
<td>Relatively simple, quick and less demanding on resources; Easy to replicate; Minimum detectable differences (MDDs) to demonstrate treatment-related effects may be relatively small.</td>
<td>Typically employ easily-cultured single species which may not be ecologically representative; Cannot assess actual external recovery; Limited interspecies interactions; Population densities artificial.</td>
</tr>
<tr>
<td>Model ecosystem and semi-field studies</td>
<td>Enable standardisation of exposure and habitat conditions; Allow replication and statistical evaluation; Can include some ecological interactions; Larger aquatic mesocosms likely to be more ecologically realistic than aquatic microcosms and terrestrial model ecosystems.</td>
<td>Limited external recovery (particularly in terrestrial model ecosystems); Organisms with a complex life-history may be under-represented; Do not capture all ecological interactions that may occur; Terrestrial model ecosystems and aquatic microcosms usually cannot assess multiseason effects of chemicals; MDDs for treatment-related effects may be relatively large.</td>
</tr>
<tr>
<td>Field studies</td>
<td>Realistic spatial unit; Can assess multiseason effects of chemicals if of sufficient duration.</td>
<td>Difficult to replicate fields or to find reference systems; Difficult to statistically underpin treatment-related effects; May not include all relevant source habitats.</td>
</tr>
<tr>
<td>Landscape scale biological and chemical monitoring studies</td>
<td>The most realistic spatial scale of ecological recovery assessment available; Likely to include relevant source habitats.</td>
<td>Resource intensive; Rarely conducted, so do not routinely support ecological risk assessments; Due to resource requirements may be limited in temporal scale; Not possible to replicate; Difficult to statistically underpin treatment-related effects.</td>
</tr>
</tbody>
</table>

(a): Long-term interactions, such as genetic changes as a result of environmental conditions, cannot be assessed by short-term or small-scale experimentation.
8.2. Modelling approaches

8.2.1. Pros

There is a growing realisation that in complex ecological systems (including agricultural landscapes) potential stressors may cause multiple outcome changes due to feedback mechanisms within the system (e.g. Blaustein and Kiesecker, 2002; Didham et al., 2005; Harmon et al., 2009; Salice et al., 2011). This means that empirical results need to be considered carefully in terms of the precise context under which they were gathered. Developing system models allows a better understanding of the framework in which recovery operates. Thus, modelling, if able to simulate accurately the feedback mechanisms and context, can provide predictions of changes in systems properties for a range of environmental contexts and therefore can warn of potential causes of concern, by covering a much wider scope than is possible with experimental approaches.

A clear advantage of modelling is that there is no requirement for additional field work if the input data are adequate and the model sufficiently verified. Under these conditions logistical and temporal issues can be dealt with more easily. This is, particularly, the case if weather or other variables that may alter the outcome are important, since experimental work will always be subject to the prevailing environmental conditions at the time field work is undertaken. A secondary temporal effect is the history prior to experimentation. In the case of recovery, the state of the system prior to the experimental management will be dependent upon the history of events up to this point. These are rarely known, and cannot be separated entirely from the treatment effects. However, in models these issues do not present a problem if the appropriate states of the populations or communities of concern are defined by the modeller.

Similar to the historical context, the resilience of the overall population before treatment is critical to determine if the impact of a treatment is to be realistically evaluated (see Section 3.3.2). This can be assessed by modelling, if explicitly addressed either by simulation of the actual population state in the environment under consideration or by evaluating a range of potential resilience states. However, simple population dynamics, considering populations under density-dependent control as a single entity, are only part of the issue that modelling needs to address. As stated earlier (see Section 3.3.2), populations in agricultural systems are often fragmented, and will often be subjected to spatio-temporally varying potential stressors (e.g. assessed products applied to different fields). In fact there are a number of issues that affect populations that can only realistically be assessed by models or by very long-term and large-scale monitoring. These are all related to spatial-temporal variation in potential stressor and/or population state in space and time. Chief among these is the ‘action at a distance’ concept or source-sink phenomenon. This will occur when an ecological trap is caused by repeated mortality (e.g. repeated exposure to a stressor causing mortality), interspersed by immigration from source habitats. This, in turn, will lead to impacts in the source habitat, and depending upon dispersal and reproductive rates may even result in source–population decline (Holt, 1993). If, however, non-treated source habitats are numerous enough in agricultural landscapes and only slightly influenced by ‘action at a distance’, these source habitats may guarantee a successful external recovery of populations in areas of landscape directly exposed to assessed products. Similarly, patch-dynamics or metapopulation dynamics may also result in complex long-term population trajectories which can result in overall population declines, even though local effects appear to be small (e.g. Bulman et al., 2007) or in population increases, even when local effects are large. Here, spatial modelling can be used to project the population dynamics into the future when the properties of the actual agricultural landscape of concern are taken into account.

Another major advantage of modelling is the descriptive power of defining the model itself. During this process uncertainties, processes and data needs can be explicitly defined, providing description of what we currently know, but also identifying weaknesses in current knowledge. Sensitivity analysis can be used to identify processes and parameters that require closer study or data generation to improve the ERA (e.g. Parry et al., 2013). In this way, the system model can help direct future research into areas of most concern for better evaluation of recovery.

There are five major advantages of population modelling:

- the state of the population before the introduction of the potential stressor can be defined;
- wide geographical, spatial and temporal scales can be incorporated;
- multiple stressors, including integration of spatial, potential and other environmental stressors, can be assessed (e.g. Dalkvist et al., 2009);
• uncertainties, inclusions and exclusions in the model can be explicitly defined, and the model can be used to identify areas requiring data generation;
• the method is relatively inexpensive compared to data generation.

As shown in Section 6, ecological recovery of populations may also depend on stressor-related shifts in community composition and food-web interactions. For example, the replacement of a vulnerable population by a less vulnerable one with a similar niche may hamper recovery of the original vulnerable species. Indirect effects of potential stressors may be more persistent than the direct effects on the impacted populations of concern, and, consequently, might affect recovery potential of these populations. Food-web models are in principle appropriate tools to address stressor-induced shifts in population interactions. First of all, food-web (or food-chain) models are useful to trace the fate of contaminants through the food chain and assess impacts at higher trophic levels than those initially impacted by a contaminant. Secondly, food-web (or food-chain) models can help assessing cascading effects mediated by ecological interactions between species such as predation or competition. Although food-web models are conceptually suitable and appropriate, parameterization and uncertainty of predictions are challenges in their application in risk assessments (see e.g. Baird et al., 2001; Traas et al., 2004; De Ruiter et al., 2005; De Laender et al., 2011).

8.2.2. Cons

Modelling is a data hungry process. Models which consider larger spatial–temporal scales will need data not only regarding the (focal) species being considered but also the state of the environment and the way it might change. This requires a good understanding of all relevant ecological processes influencing the responses of the entity to be assessed within its environmental context and of the feedback mechanisms. All this data also needs to be incorporated into a model which requires specialist skills, but more importantly the result needs to be assessed in terms of function and reliability (see EFSA PPR Panel, 2014). This evaluation is a rather resource demanding endeavour for both the modeller and assessor.

It is important to consider all aspects of the domain of the validity of the models (EFSA PPR Panel, 2014). The evaluation process also requires data, but this data may be difficult to obtain. ‘Validation’ of models is considered necessary, but in the case that we want models for prediction of novel system states we cannot expect model predictions for these states to be verified in the short-term. Hence, assessment of models requires considerable insight into the system and considerable modelling expertise from the assessor. This is a practical difficulty if this expertise is in short supply.

Although usually less costly than the generation of experimental data, some systems models can be very large encompassing a wide range of aspects. Therefore, costly model development, testing and documentation are of particular concern for large models with many components. As a result, larger models are likely to become long-term projects, requiring standardised set-up and usage conditions to be specified for regulatory use. Currently, these do not exist and therefore evaluation procedures will be costly and difficult to assess objectively for these models. These are not costs that have been traditionally associated with ecological modelling, but come with steadily increasing expectations of model documentation and performance (e.g. EFSA PPR Panel, 2014).

Limiting factors to the use of models can therefore be identified as follows:

• insufficient data to create the model;
• technical inability to represent the necessary processes at the correct scales;
• difficulty in assessing whether a model is useful;
• development, testing and documentation of models can be resource demanding;
• educating regulators and other end-users of model outputs in the possibilities and limitations of complex mechanistic models is a time demanding activity;
• model outcomes are reasoned hypotheses, not facts;
• difficulties in including the full range of variable influences operating in the real world.

8.2.3. Overall evaluation of pros and cons of models

Although mechanistic effect models have the advantage that they can be controlled by the modeller and in this sense have no spatial–temporal limitations, there are some important lessons learned from
semi-field (mesocosm) experiments with respect to the occurrence and persistence of indirect effects. In semi-field experiments that contain a limited number of interacting populations and a relatively simple food-web, and most likely also in relatively simple food-web models that depict the interaction of a limited number of populations, the observed or simulated indirect effects of stress may be unrealistic if essential feedback mechanisms that may dampen responses, in both space and time, to potential stressors in agricultural landscapes are not taken into account. So, in order to predict population and community recovery with computer simulation models, they should represent the complexity of agricultural landscapes (or edge-of-field surface water habitats) in a realistic way. For example, regular geometry in spatial models introduces bias to simulation results and should be avoided (Holland et al., 2007). Furthermore, the size of the simulated landscape scene may affect results if there is a net loss of individuals over the outer edge of the scene (e.g. Skelsey et al., 2005). Such artificial spillovers in spatial models may be avoided, for example by connecting the edges of the simulated scene, using the torus representation to create ‘periodic boundaries’ (e.g. Liu et al., 2013). The challenge for mechanistic effect modelling is then to be simple enough to keep the required input data manageable, and complex enough to realistically capture the complexity of the agricultural landscape under evaluation. Managing this trade-off will be a matter of compromising in the foreseeable future.

It is clear that modelling in combination with experimental data can more accurately represent the systems and processes required for the assessment of ecological recovery than experimental data in isolation. The ability to integrate dynamics over time, space and different environmental contexts results in modelling being able to represent a much wider range of potential causes of concern than would be possible with experimental approaches. Here, it is useful to consider different error avoidance strategies and their aims. Experimental approaches attempt to avoid Type I errors, thus will evaluate whether a condition can be shown to occur under a specific set of circumstances (i.e. in this case recovery). However, for recovery and risk assessment in general we need to avoid Type II errors, i.e. we should not fail to warn of circumstances where problems may occur. This means we should place more emphasis on breadth of environmental conditions in our analysis, something that is only possible with modelling.

However, uncertainty related to the accuracy of predictions makes models intrinsically less attractive than empirical data. The Scientific Committee is currently developing a scientific opinion on guidance on uncertainty in risk assessment (EFSA SC, in press a,b). This uncertainty is partly related to lack of knowledge identified in the modelling process and so is also a result of the rigorous approach now required for model development and documentation (i.e. knowledge gaps often are made explicit for modelling and ought to be applied equally to field experiments); this should not be considered a drawback of modelling. Lack of data to build models is, however, a real problem often excluding modelling as a viable approach. The corollary to this is that experimental evidence is also often gathered without adequate understanding of the context in which it is generated, and the fact that it does not directly represent the real system (e.g. see Schwartz et al., 2000). Both models and experiments are proxies for the real world application of the potential stressors and subsequent population recovery. In both cases, it is therefore necessary to carefully define the question(s) which the model or experiment need to answer. The framework of knowledge and uncertainty surrounding these questions also needs to be defined to be sure that the information used for recovery assessment is based on sound scientific principles.

9. An integrative approach for addressing ecological recovery for potential stressors

9.1. Factors affecting ecological recovery of vulnerable non-target organisms after exposure to a potential stressor

From the information presented in the previous sections, it can be concluded that ecological recovery of structural endpoints (e.g. population densities) in ecosystems may be hampered by one or more factors/conditions mentioned in Table 2. Note that these factors/conditions do not per se hamper ecological recovery always and everywhere, but that they should be considered in their environmental context.
However, this list of criteria is restrictive due to the complex nature of landscapes. The spatial distribution of NTOs is governed by both niche-assembly and dispersal-assembly rules. In addition, the spatial distribution of potential stressors tends to be patchy. Consequently, besides the species traits that affect internal and external recovery, the spatial–temporal arrangement of habitats, resources and exposure to potential stressors is critical for the evaluation of population dynamics in landscapes. Within agricultural landscapes, the traditional approach of the separation of in-field and off-field assessment of ecological recovery is only useful for terrestrial non-target species that do not move between in-field and off-field habitats as individuals, and when dispersal at scales greater than the size of the treated field is not an important feature of their ecology. For many terrestrial non-target species that occur in agricultural landscapes, this is typically not the case. For example it is known that agricultural landscapes favour highly dispersive species of carabid beetles (Holland, 2002). Furthermore, the distinction between in-field and off-field is particularly relevant for those potential stressors that are specifically applied in the field, in particular pesticides or, e.g. manure which may result in exposure to residues of feed additives. In the case of IAS, a distinction between in-field and off-field will usually not be helpful because IAS are not intentionally applied, except when they are introduced with planting material.

For those aquatic non-target species that mainly depend on internal recovery processes for their sustainability in edge-of-field surface waters (e.g. short-cyclic organisms with many offspring and/or resistant life stages), a local risk assessment may suffice to address their ecological recovery. For many aquatic species with a more complex life-history, population recovery usually cannot be evaluated without considering the landscape context. Therefore, small-scale experimental semi-field studies can only be used to address the ecological recovery option in the aquatic risk assessment if (1) in lower tiers aquatic organisms with a short-generation time, in which internal recovery is relevant, are identified to be at risk (e.g. algae at risk from herbicides), or (2) the test systems also contain representatives of vulnerable populations of the taxonomic groups at risk (see e.g. EFSA PPR Panel, 2013a).

Figure 9 schematically illustrates the importance of species traits, landscape properties and exposure characteristics on extinction risk and internal and external recovery processes of NTOs in a landscape context. Acting in concert, species traits, landscape properties and exposure characteristics may determine the potential for populations of NTOs to escape the stress event in space (x-axis in Figure 9) or time (y-axis in Figure 9). Note that the potential for NTOs to recover from an effect of a potential stressor is multi factorial. External recovery depends on the spatial pattern of exposure, the home range of individuals, habitat or food preferences, and the availability and connectivity of refuges. The potential for internal recovery depends on generation time, the number of offspring, the presence of resistant life stages and the persistence of the potential stressor.

As illustrated in Figure 9, relatively small-scale semi-field and field experiments may be appropriate tools to conduct local risk assessments suitable to address the ecological recovery of non-target species that mainly depend on internal recovery processes. These (semi)field experiments may also demonstrate the possible routes and potential impacts of indirect effects on the ecological recovery of populations of interest. However, if ecological recovery is mainly dependent on landscape properties and recolonisation traits of the affected non-target species, either large-scale field studies (which are

Table 2: Factors that, dependent on the environmental context, may hamper ecological recovery of ecosystem structure and population abundance and are relevant for PPPs, GMOs, feed additives and IASs as potential stressors

<table>
<thead>
<tr>
<th>Criteria defining circumstances under which ecological recovery may not be expected to occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long duration of exposure relative to life-history</td>
</tr>
<tr>
<td>Large-spatial scale exposure relative to organism spatial characteristics</td>
</tr>
<tr>
<td>High probability of exposure of sensitive life stage</td>
</tr>
<tr>
<td>Lack of exposure avoidance behaviour</td>
</tr>
<tr>
<td>High probability of indirect effects of the potential stressor</td>
</tr>
<tr>
<td>Low fecundity and long-generation time</td>
</tr>
<tr>
<td>Low recolonisation ability</td>
</tr>
<tr>
<td>Lack of, or inadequately connected, source populations</td>
</tr>
<tr>
<td>Population viability already threatened by other stressors</td>
</tr>
</tbody>
</table>
very expensive to conduct) or spatially explicit population models (which are costly to develop, and have validation issues on top of this) may be the appropriate tools.

Not all non-target species and communities can be appropriately assessed always and everywhere. Therefore, the selection of focal taxa, communities or landscapes is an important prerequisite for prospectively addressing the impact of potential stressors and the potential for ecological recovery of non-target species. Focal taxa are relevant for both experiments and models; focal landscapes are relevant for spatially explicit population models; and focal communities are relevant for semi-field and field experiments and food-web models (see also the conceptual framework presented in Figure 4).

9.2. Relationship between recovery of structural and functional endpoints

Besides the structural recovery of ecosystems, the recovery of ecosystem functions and ecosystem services needs to be considered and assessed. In the recovery of ecological functions, we can consider the recovery of species populations in terms of numbers and biomass, and in terms of the diversity of the species populations, taking into account evenness. Both abundance and diversity may be important for assessing recovery of ecosystem functions and ecosystem services. For instance, ecosystem services provided by beneficial insect species, such as pollinators and pest natural enemies depend on species numbers (Cardinale et al., 2012); hence, a recovery of functions along with the recovery of numbers is plausible. They also depend on the diversity of the insect groups. Different natural enemy groups together may provide better biological control than a single species (but not necessarily) (Tscharntke et al., 2005).

The relationship between taxa richness and function is generally non-linear, e.g. due to functional redundancy. Based on the generally non-linear saturating relationship between species richness and ecological functions, it may be the case that ecological functions are (largely) recovered at diversity levels that have not fully returned to the NOR (Cardinale et al., 2011, 2012). Different species may provide the same function in somewhat different ways, e.g. pollinators pollinate at different times of day or different times of the season, and natural enemies forage on different parts of the plant (this is referred to as complementarity, e.g. Tscharntke et al., 2005). Plant species with complementary traits may together capture a greater portion of the available resources and thus improve productivity and, in the long-term, nutrient cycling (Cong et al., 2014). Tscharntke et al. (2005) discuss that with a greater species pool, the probability for high levels of ecosystem service provisioning is increased as the probability of presence of species that are good at providing services increases with species richness. As environmental conditions vary, different species may perform best; hence, a diverse community provides likely more robust levels of services (insurance hypothesis). Redundancy is the

Figure 9: Schematic illustration of the importance of species traits, landscape properties and exposure characteristics on extinction risk and internal and external recovery processes of NTOs in agricultural landscapes as well as the role of (semi)field experiments and spatially structured population models to assess ecological recovery of stressed populations of NTOs.
contrary of complementarity, indicating that functions of different species cannot be distinguished. This means that species loss will not result in loss of function. Functional redundancy thus provides insurance against service loss when there is species loss. Although ecological functioning and ecosystem services may recover before species abundance and species diversity have fully recovered, further empirical evidence is needed to confirm this.

9.3. The need for an integrative approach

The information presented in the previous sections, and summarised in the conceptual framework (Figure 4) and Figure 9, shows that in principle experimental (e.g. semifield experiments) and modelling tools (e.g. spatially explicit population models) could be used to address the recovery option in ERAs for potential stressors that fall under the remit of EFSA and for which the exposure is a consequence of application in agricultural settings, e.g. PPPs, GMOs and feed additives. The information presented in Sections 9.3.1 and 9.3.2 mainly concerns the selection of focal taxa, processes and landscapes for the prospective ERA of pesticides, feed additives and GMOs, with a focus on the recovery option. Section 9.3.3 presents an IAS-specific approach to address ecological resilience in ERA.

9.3.1. Selection of focal taxa and/or processes

In agroecosystems and related landscapes there is usually a high number of NTOs and ecological processes that may be affected by potential stressors. Considering that only some of these species and processes can be tested and/or evaluated in ERA, a representative subset of sensitive NTOs (threshold option) and of vulnerable NTOs (recovery option) and ecological processes (referred to as ‘focal taxa’ and ‘focal processes’) that allow a realistic worst-case higher tier ERA needs to be selected. The steps described in Figure 10 for the selection of focal taxa and/or focal processes to assess ecological recovery may be used.

![Figure 10: Schematic steps for selecting focal taxa and/or processes for conducting ERAs that address the threshold and recovery options](Source: adapted from EFSA GMO Panel, 2010a)
Before starting with the stepped procedure depicted in Figure 10, it is important to emphasise that the selection of focal taxa and/or processes must be done separately for each SPG. Note that the focal taxa and/or processes may be different for different ecosystem services underlying a SPG. For example, the protection of populations of terrestrial NTAs may be important in agroecosystems for the ecosystem services ‘pest control’ and ‘pollination’, but the important taxa that provide these ecosystem services will usually be different for different services. Likewise, for the ecosystem services ‘nutrient cycling’ and ‘decomposition of organic matter’, microbes play a crucial role, but different functional groups of microorganisms in soils and sediments are responsible for different functions. Furthermore, it is important to collect information on the intended use of the potential stressor, e.g. the application of a pesticide in a given crop or the deliberate release of a GMO into the environment. This information sheds light on the types of (agro)ecosystems that potentially become exposed to the potential stressor. In addition, when the recovery option is offered, it is important to consider that essential ecosystem services may not be provided by the impacted populations until they are recovered. Due to the complex and complementary relationships between interacting populations, particularly when and where functional redundancy is low, a risk assessment offering the recovery option must also address the potential consequences for other NTOs and the ecosystem services they provide. This assessment may require repeating the process described in Figure 10 for the selection of a complementary set of focal taxa and focal processes, as the assessment of these effects requires a selection of focal taxa and processes based on their dependency on ecosystem service(s) that will not be provided during the recovery period.

A first step in the selection of species and processes to address in ERA is the identification of SPG-relevant sensitive taxa and/or processes that are potentially exposed. For this, traits determining the chance of exposure and traits determining the intrinsic sensitivity to the assessed stressor of concern should be used. Within this context, information on the mode-of-action of the assessed stressor is also needed (particularly relevant for pesticides and GMO traits with a specific toxic mode-of-action). This first step outlined in Figure 10 is essential for all ERAs, irrespective of whether the threshold option or recovery option is selected. Within the context of this scientific opinion, the part of the decision scheme addressing the recovery option is most relevant. The SPGs for certain taxa (e.g. for vertebrates such as birds, mammals, amphibians, and fish, in ERA of pesticides) may not allow the recovery option, so that the part of the decision scheme addressing the threshold option is most relevant for these taxa.

In cases where the recovery option is not in conflict with the defined SPG, Steps 2a and 2b of the decision scheme (Figure 10) illustrate the importance of categorising the potentially stressor-sensitive taxa or processes based on the extent to which they can escape the assessed stressor in space and time (see also Figure 9). Within this context, a grouping of vulnerable taxa and/or processes based on traits that determine internal and/or external recovery is required, as well as information to identify the chance that their temporal decline causes indirect effects. Criteria for this grouping are: demographic and recolonisation traits, as well as information on the ecological roles these taxa play in communities. This grouping will result in indicator groups for recovery of vulnerable species and/or processes that are relevant for local or landscape-level ERAs (see Section 9.3.2 below).

Step 3 in the decision scheme (Figure 10) refers to the final selection of focal taxa and/or processes for a specific environmental scenario in a specific ecoregion. Note that the selection of focal taxa and/or processes should, besides sensitivity (Step 2: threshold option) and vulnerability (Step 2a and 2b: recovery option), be based on additional ecological criteria (e.g. spatial distribution in Europe; habitat preference; ecological significance with respect to the ecosystem services considered) and practicality (testability, available ecological and/or ecotoxicological information) so that their stressor–response relationships (including recovery) can be studied in experimental ecosystems (e.g. mesocosms), in field experiments and/or by means of mechanistic population and ecological interaction (e.g. food-web) models.

The recovery option requires the assessment of potential consequences for other NTOs of not providing some ecosystem services during the recovery period of the selected focal taxa and/or process. Within this context, it should be borne in mind that: non-target organisms suffering indirect effects may not necessarily be sensitive to the potential stressor; populations that suffer direct and/or indirect effects may be affected by action at a distance; and variability among ecoregions and ecotypes may be important (as the ecological role of selected focal taxa and their links with ecosystem services may differ between different ecosystems and among different spatial scales).

Although the prospective ERA of assessed products is usually based on a realistic worst-case approach with respect to parameter selection, it cannot be excluded that, for example, a large-scale use of the assessed stressor(s) will result in unexpected effects on NTOs and processes and/or that the rate of recovery initially predicted deviates from reality. For this reason, a reality check of
prospective ERA procedures by means of field monitoring programmes is recommended (see also Figure 4). Furthermore, note that (endangered) species considered insensitive to direct effects of a potential stressor may be susceptible to indirect effects (see e.g. EFSA Scientific Committee, 2016). These indirect effects may, for example, concern a decline in essential food resources and/or habitat caused by direct effects of potential stressor(s) on sensitive taxa and/or processes (see e.g. Section 5). Due to unexpected interactions and cascade effects, the magnitude and duration of indirect effects are not possible to predict with total accuracy using ERA procedures. These effects may, however, be detected using large-scale field monitoring studies. Linking this monitoring as an iterative procedure to improve modelling approaches is therefore very important. The resulting improved spatially explicit ecological interaction models may then be used to investigate possible mitigation and management measures to avoid the newly observed indirect effects.

9.3.2. Selection of appropriate spatial scales to address exposure, effects and ecological recovery

From the above, it appears that when conducting ERAs for assessed stressors the selection of focal taxa and/or processes cannot be disconnected from selecting an appropriate spatial scale to address exposure, effects and ecological recovery. Significant differences exist in the climatological, physical, chemical and biological properties of agricultural landscapes among different areas in Europe. Consequently, for EU-level risk assessments, different environmental scenarios need to be developed that reflect these differences (see also EFSA PPR Panel, 2014).

The possible consequences of the combination of direct and indirect effects of assessed stressors on ecological recovery processes are difficult to address with simple approaches. Therefore, ecosystem-level scenarios that incorporate physical and chemical ecosystem properties (e.g. for in-field, edge-of-field and off-field terrestrial habitats; ponds, ditches and streams) and focal taxa that have been selected on the basis of demographic and dispersal traits, should form the basis for designing appropriate semifeild tests and food-web models. Landscape-level scenarios that incorporate landscape properties and focal taxa selected on the basis of both demographic and dispersal traits form the basis for spatially-explicit modelling approaches to address internal and external ecological recovery processes of populations.

Development of environmental scenarios should include integral linkage of exposure and effects; this is necessary as the appropriate linking of exposure to effects is crucial in ERA and more complicated when addressing effects and ecological recovery for ecological entities subject to variable exposures in space and time. Environmental (ecosystem- and landscape-level) scenarios and effect models (i.e. spatially explicit population and food-web models) in principle can be used to evaluate: (1) the effects and ecological recovery potential following exposure to individual-assessed stressors; (2) the cumulative effects and ecological recovery potential resulting from realistic combinations of assessed stressors; (3) the relative contributions of different stressors (assessed and non-assessed); (4) the importance of landscape properties and refuge areas on recovery potential of NTOs; and (5) the consequences of mitigation measures and landscape management on possible impacts of assessed stressors.

As described in Sections 3.3.2 and 4, non-target taxa may occur in both exposed and non-exposed patches of landscape. A local scale ERA (informed, for example, by means of semi-field experiments) may suffice for focal NTOs if the individuals do not move between exposed and non-exposed habitats and ecological recovery is largely dependent on internal recovery processes (see top-left corner of Figure 9). A local ERA may also suffice for focal NTOs if the conditions for external recovery represented in the semi-field experiment are realistic worst-case. For a mobile species with individual ranges larger than the local scale of the exposed habitat (e.g. a treated-field or edge-of-field site), however, a local scale ERA in most cases is not sufficient, as in (semi)field experiments a high enough abundance of focal taxa in combination with realistic worst-case conditions for their external recovery usually are not realised. To sufficiently address phenomena like action at a distance and external recovery processes as influenced by landscape properties (e.g. spatial configuration and connectivity of exposed and unexposed habitats), a landscape-level ERA is required. Therefore, in both mobile and non-mobile focal taxa, specification and consideration of the temporal pattern of stressors is necessary in addition to the spatial distribution of stressors.

The EFSA PPR Panel described a procedure for ERAs of assessed stressors at the local and landscape scales for mobile (focal) NTAs (EFSA PPR Panel, 2015). The NTA opinion demonstrates that, in addition to a local scale ERA, also a landscape scale ERA (represented by means of spatially explicit
population models) would need to be conducted for focal taxa which move between exposed and non-exposed sites (i.e. species for which external recovery processes are key). Note that it may be easier to design realistic worst-case conditions for external recovery of invertebrates in aquatic lentic semifield experiments (e.g. experimental ponds) than in terrestrial semi-field experiments. Experimental ponds, usually, are isolated test systems approximating realistic dimensions and surrounded by non-aquatic habitats. In experimental terrestrial ecosystems (e.g. experimental plots), the size of the test systems considerably influences external recovery processes as the scale of the experimental plot rarely matches the scale of fields or landscapes where the stressor is applied. In this case, both the size of the plot and habitat composition of the surroundings is likely to alter rates and scales of external recovery (Thacker and Jepson, 1993; Topping et al., 2014).

In landscape-scale population modelling, we need rules of thumb and associated criteria to determine the size of the focal landscape, as well as the spatial configuration of different habitats within that focal landscape, at which effects and ecological recovery potential should be assessed. This is because the smaller the scale of the simulated landscape, the more local effects dominate, whereas the potential for significant edge effects may also increase (the result of what individuals do when reaching the edge of the simulated landscape). Some useful criteria are that the landscape scale should be large enough, and the spatial configuration of the different landscape elements complex enough, to contain a viable long-term population of the species. In addition to this, the spatial dynamics of the species and their life-histories need to be taken into account. Landscapes that are so small that an average individual can travel from one side to the other are too small to generate long-term spatial dynamics associated with source–sink phenomena. A size for a focal landscape, whereby the average individual or its progeny of the focal taxa of concern could not traverse it within 10 generations, could be a reasonable rule of thumb. Experience with the ALMaSS model system suggests that a 10 × 10 km landscape works well for the majority of terrestrial species (e.g. carabid beetles, small mammals and skylarks), but that larger areas are needed for large mammals (e.g. roe deer). Smaller areas can be used for low-mobility terrestrial species, but scales of less than 5 × 5 km generally introduce unwanted edge effects. Similar rules of thumb need to be developed for mobile aquatic species that inhabit interconnected surface waters like streams and ditches.

The conceptual framework presented in Figure 4 and further discussed in this section requires appropriate ERA tools to address recovery (i.e., experiments and models). Although field and semifield approaches are already well developed, standard environmental scenarios for prospective ERA that allow integrated fate and effect modelling to address ecological recovery of populations of vulnerable non-target species are in their infancy. Nevertheless, experience with the application of mechanistic effect models in the ERA for assessed stressors has recently increased and examples of this can be found in recent issues of the scientific journals ‘Ecological Modelling’ (Grimm and Thorbek, 2014) and ‘Environmental Toxicology and Chemistry’ (Galic and Forbes, 2014). The landscape features incorporated in the environmental scenarios for spatially explicit population modelling of potentially vulnerable NTOs may range from relatively simple to complex. Ideally, the modelling approach should be as simple as possible (easier to apply, input parameters less demanding) on the condition that the model outputs are sufficiently valid to support decisions (e.g. see reservations regarding artificial landscape configurations in Section 8.2.3) (Skelsey et al., 2005; Bianchi et al., 2007). If the landscape features that are addressed in the environmental scenario are relatively simple it should be demonstrated that the adopted scenario in the modelling approach is a realistic worst-case with respect to exposure and effects, including ecological recovery. To demonstrate this, for a representative number of potentially vulnerable taxa and potential stressors, spatially explicit population modelling approaches linked to realistic landscapes including stressor dynamics (e.g. the ALMaSS approach developed by Topping et al., 2003) may be used to ‘calibrate’ the modelling approaches based on simpler environmental scenarios. In all cases, an important scientific criterion that needs to be fulfilled for population models to assess risks for assessed products and NTOs is that they have to follow the principles of good modelling practice (e.g. EFSA PPR Panel, 2014).

As indicated above, the recovery option requires a complementary assessment regarding the consequences of not providing some ecosystem services during the recovery period. An example is the functional role of the aquatic pelagic invertebrate community. According to the PPR Panel guidance for pesticides (EFSA PPR, 2013a), aquatic invertebrates in edge-of-field surface waters are to be protected at the population level by considering their abundance and/or biomass. The recovery option allows small effects for a few months, medium effects for weeks and large effects for days on the abundance and/or biomass of vulnerable populations of invertebrates, as long as their reduction does not result in more persistent indirect effects. An important ecosystem service provided by freshwater invertebrates
is the control of algal blooms (EFSA PPR, 2010) and this role is particularly relevant in freshwater ecosystems of the Mediterranean region (higher temperatures and nutrient levels). Microcosm studies on the fate and effects of an insecticide have confirmed that allowing the recovery option for invertebrates that graze algae under Mediterranean conditions may result in more pronounced algal blooms (indirect effect) and a slower recovery of affected daphnids than under temperate test conditions (van Wijngaarden et al., 2005). Other experimental pond studies with insecticides confirmed that under different environmental conditions and at exposure levels above the threshold of direct effects, secondary consequences of not providing some ecosystem services by the affected populations may result in clear differences in the type and magnitude of indirect effects and the rate of recovery of affected endpoints (López-Mancisidor et al., 2008a,b).

9.3.3. Conceptual approach of ERA for invasive alien species that are harmful to plant health

The conceptual approach of ERA for IAS has been documented by the plant health Panel (EFSA PLH Panel, 2011) and was recently revised in the ERA of the apple snail for the EU (EFSA PLH Panel, 2014). The ERA framework applied by the EFSA PLH Panel is shown in Figure 11.

The IAS is considered the driver of ecosystem change. The driving factor, also called driving force, is a factor directly or indirectly causing ecosystem changes. A direct driver unequivocally influences ecosystem processes by itself, whereas an indirect driver operates by altering one or more direct drivers. The indirect drivers are underlying (root) causes that are formed by a complex of social, political, economic, demographic, technological and cultural variables. Collectively, these factors influence the level of production and consumption of ecosystem services. The causal linkage is almost always mediated by other factors (Tomich et al., 2010). The driving force is expressed in terms of density or abundance of the IAS.

The definition of impact relates to the specific SPU, a functional unit whose components (individuals, species or communities) are characterised by functional traits defining their ecological role (Vanderwalle et al., 2008).

The impact depends on (1) the resistance of the system defined as the ability of the ecosystem to continue to function without change when stressed by a disturbance that is internal to the system (Harrington et al., 2010); (2) the resilience of the system defined as an ecosystem’s ability to recover

Source: EFSA PLH Panel, 2011

Figure 11: Scheme of the procedure for assessing the environmental risk posed by apple snails (EFSA PLH Panel, 2014) derived from the ERA Guidance
and retain its structure and function following a transient and exogenous shock event (Harrington et al., 2010); and (3) the management measures in place to control the IAS.

Scenario analyses are performed for the impacts to be assessed under specific assumptions defining the scenarios of the assessment. The scenario analyses are attempts to explore what future developments may be triggered by a driving force, in this case an exogenous driving force, i.e. a driving force that cannot or can only partly be influenced by decision makers (Henrichs et al., 2010). Scenario analysis includes explicitly the combination of qualitative and quantitative information and estimates (EEA, 2001). Most of the work is based on qualitative evaluation that can be translated into quantitative assumptions on the final state of the system (Henrichs et al., 2010).

The density of the driver of the ecosystem service change is introduced in the scenario analyses together with the spatial and temporal dimensions.

The impacts are assessed on:

- The Ecosystem properties as influenced by functional traits. A functional trait (see Section 6) is a feature of an organism which has demonstrable links to the organism’s function (Lavorel et al., 1997; Harrington et al., 2010). Thus, a functional trait determines the organism’s response to pressures (response trait) and/or its effects on ecosystem processes or services (effect trait). Functional traits are considered to reflect adaptations to variation in the physical and biotic environment and trade-offs (ecophysiological and/or evolutionary) among different functions within an organism. In plants, functional traits include morphological, ecophysiological, biochemical and regeneration traits, including demographic traits (at population level). In animals, these traits are combined with life-history and behavioural traits (e.g. guilds: organisms that use similar resources/habitats). To evaluate the impact on the traits, the relationships between the driver of the ecosystem change and the ecosystem traits are assessed. Then clusters which correspond to the multiple associations between traits and services are identified (De Bello et al., 2010).

- The Ecosystem services benefits that humans recognise as obtained from ecosystems that support, directly or indirectly, their survival and quality of life; ecosystem services include provisioning, regulating and cultural services that directly benefit people, and the supporting services needed to maintain the direct services (MA, 2005; Harrington et al., 2010).

- The Biodiversity the variety of living organisms and the ecological complexes of which they are part (Harrington et al., 2010). It covers genetic, structural and functional components, which are represented at different organisational levels, from within-organism to individual organism, species, population, community and ecosystem levels (adapted from Secretariat of the CBD (2002); MA (2003) and extended according to Noss (1990)).

Only the negative impacts of IAS on the traits, ecosystem services and biodiversity components are assessed.

There are important similarities in the approach outlined for IAS and the approach outlined above for PPPs, GMOs and feed additives, but there are also some important differences. The key differences are:

- IAS are usually (with the exception of biological control agents of invasive plants) not intentionally applied in agricultural areas to achieve production goals, as is the case for PPPs, GMOs and feed additives, but they come as uninvited invaders at their own accord;
- As a result, the spatial distribution of these IAS is the outcome of natural and (usually inadvertent) human-assisted dispersal processes, rather than a spillover outside the area of intended application as for the other types of potential stressors above. The distinction between in-field and off-field is less relevant for IAS;
- The consequences of IAS are the result of ecological relationships with other species in the invaded ecosystems, such as herbivory or pathogenesis, and further interactions in the ecological network. Although such ecological interactions are also relevant for other stressors, in the case of IAS they are the primary impact, whereas for other stressors they are indirect impacts, following from initial impacts on sensitive species.
- As the interaction between IAS and ecosystems is very long-term, the time scale of assessment is usually much longer (years to decades) than in the case of stressors that have toxic effects; hence the concept of ecological recovery, whereas still relevant, applies to very different temporal scales.
10. How to tackle complexity in environmental risk assessment

This scientific opinion proposes that a systems approach is required to appropriately address ecological recovery in ERA. This systems approach allows the integration of the various species, environmental factors, scales, and stressor-related responses necessary to address the context-dependency in ecological recovery. Although this may appear to generate an overly complex ERA, the systems approach allows the identification of realistic worst-case combinations of species and environmental scenarios that are necessary to focus ERA. To ensure confidence in this approach, it is important that the tools (environmental scenarios and models) are developed as a common resource ensuring transparency and reliability. Thus, the complexity may be reduced to arrive at a manageable day-to-day approach for all parties in regulatory risk assessment. In this context, it is important to note that the conservatism of the assessment depends upon the selection of appropriate scenarios and focal biological entities. To reject a systems approach on the basis of complexity would ignore the fact that current decisions based on general approaches may not provide adequate levels of protection (either over- or under-protective). To successfully implement a systems approach the following challenges should be addressed:

- Harmonisation of the procedure for selection of focal taxa and construction of environmental scenarios between different regions and different potential stressors. Common focal taxa need to be identified to reduce the number of models that need to be developed by using the same focal taxa in as many scenarios as possible.
- Make available resources to exploit and further improve databases to select focal taxa, to construct environmental scenarios, and to develop and validate related models representative of different regions in Europe (similar to the procedure adopted by FOCUS exposure scenarios).
- Case studies should be developed as proof of principle.
- Ensure an appropriate linkage to lower tier approaches, monitoring, and other EU data collection initiatives already in place (e.g. the Sustainability Use Directive).
- Ensure the maintenance and updating of scenarios and models as new information becomes available and incorporate changes in agricultural systems over time. This needs to be coordinated by a version control group (possibly an EFSA activity).

11. Conclusions

The normal operating range

In this scientific opinion, ecological recovery is considered at the levels of populations, communities, or functions. In broad terms, ecological recovery can be thought of as the return of an attribute of an ecological entity to its NOR (sometimes referred to as baseline properties), having been perturbed outside of that range by a stressor (or multiple stressors). In order to assess recovery, it is first necessary to define what the NOR of the attribute of the ecological entity is.

Problem formulation and selection of specific protection goals

The appropriate point in a risk assessment at which the assessment of recovery should be considered and planned is at the problem formulation step, when specifying the specific protection goal(s). Ecological recovery should be considered at the relevant level of biological organisation and
relevant spatial and temporal scales for each specific protection goal. In a following step, focal taxa, focal communities and/or focal landscapes should be identified, based on relevant traits.

Threshold versus recovery options and scenario assumption

The extent to which recovery is considered in current risk assessments relevant to EFSA varies with the risk assessment area. In ERA schemes, specific protection goals may be defined in terms of a ‘threshold option’ (no effects permitted, so assessment of recovery is not relevant) or a ‘recovery option’ (effects are inevitable and permitted within specified spatial and temporal frames, and recovery assessment is therefore important). For plant protection products, both threshold and recovery options apply, depending upon the protection goal. For genetically modified organisms and feed additives, the recovery option may be selected on a case-by-case basis. For invasive alien species that are harmful to plant health, the focus of ERA is different to that of the potential stressors but ecological recovery is part of the scenario assumptions. In general, regulatory guidance documents and their supporting legislation provide very little specific information on how to assess recovery.

Recovery with press and pulse disturbances

The introduction of potential stressors may be followed by stress periods of limited duration (pulse disturbances) or in prolonged stress periods (press disturbances). The recovery option in ERA is in theory feasible if the potential stressors cause pulse disturbances, but short-term exposures may result in long-term effects if impacted organisms are not able to re-colonise the stressed habitat.

Trait-based approach and key parameters

Trait-based assessment is potentially a valuable approach for informing recovery assessments but it faces several fundamental challenges. Key ecological traits that govern recovery time are life-history traits (i.e. fecundity, voltinism and lifespan), dispersal ability (i.e. active or passive), diet and foraging behaviour, and presence of life stages resistant to the potential stressor(s). Key landscape properties that govern recovery are the proportions, configuration and connectivity of exposed and non-exposed habitats. Recovery can be classified into two main types, depending upon whether it occurs *in situ* (internal recovery) or via dispersal (external recovery). Both types of recovery may be exhibited by the same ecological entity (e.g. at different stages in a species’ life-history).

Methods, approaches and tools

As with effects assessments, the main approaches to assess recovery are experimentation, prediction, monitoring and expert elicitation. The main tools for prediction of recovery are mechanistic models whereas experimental approaches involve semifield and field studies. Both modelling and experimental approaches have strengths and weaknesses. For experimental studies, a key difference between effects assessment and recovery assessment is that the studies of recovery may require larger spatial and/or temporal scales, particularly if the organisms move between exposed and non-exposed habitats and if external recovery is key. Large-scale field monitoring studies are required as a reality check and to improve prospective ERA procedures. In scenario development and prospective ERA, rigorous expert opinion elicitation is usually required.

Indirect effects may be especially pronounced if relatively large and long-term direct effects on non-target organisms are allowed (e.g. in-field effects of potential stressors like pesticides) and/or these effects cannot be avoided (e.g. the spread of an invasive alien species that is harmful to plant health). Indirect effects may persist longer than direct effects. In principle the magnitude and the duration of indirect effects at the ecosystem level can be studied in (semi)field experiments and by means of food-web models. The occurrence of persistent indirect effects at the landscape-level might be detected by conducting large-scale monitoring programmes, but the identification of causal relationships between different potential stressors and their direct and indirect effects will be difficult and probably requires the development of landscape-specific ecological interaction models.

As with effects assessment, the assessment of recovery is easier when stressors are considered in isolation in relatively simple ecological systems but this does not reflect those real-life situations which typically involve multiple stressors in more complex systems in which non-target organisms move between exposed and non-exposed habitats. These multiple stressors may affect the fitness of the ecological entity. Thus, it should be borne in mind that at the landscape-level both multiple natural stressors as well as the presence of non-exposed refuge areas may influence the recovery ability of an ecological entity, in addition to the potential stressors that are the subject of the ERA.
Conceptual framework and systems approach

Due to the complexity of ecological systems and the need to evaluate effects and recovery in spatial and temporal dimensions, a systems approach is required. The current scientific opinion brings together the above considerations in a conceptual framework to guide risk assessors and risk managers on how to integrate recovery assessments into ERA. For a given specific protection goal, the conceptual framework links together the key parameters (i.e. focal taxa or communities, focal landscapes and potential stressors), the ERA tools (i.e. system modelling and semifield or field experiments) and the supporting information, which includes the societal perspective as well as ecological monitoring and the scientific evidence base.

While the protection goals for plant protection products, feed additives, genetically modified organisms and invasive alien species (i.e. those species that are harmful to plant health) are fundamentally similar, harmonisation of procedures to assess recovery is currently difficult to implement pragmatically because of the differences in the nature and impacts of invasive alien species as compared to the other potential stressors.

Challenges

In order to adopt a systems approach, several challenges were identified as follows:

- define the normal operating range of ecological entities (bearing in mind that this may vary in time and between different ecosystems);
- identify focal taxa, focal communities and/or focal landscapes;
- assess appropriately action at a distance in cases where the specific protection goal allows the recovery option for in-field habitats, but not for off-field habitats, particularly for mobile non-target organisms;
- predict the role of indirect effects on ecological recovery at the landscape level;
- select appropriate spatial and temporal scales and key landscape properties for the assessment of impact and recovery of different organism groups and for determining the most optimal management and/or mitigation decisions;
- operationalise links between experimentation, modelling and monitoring, and between prospective and retrospective studies, to consolidate risk assessments;
- parameterise population and food-web models including uncertainty;
- establish predictive food-web and/or ecological interaction models that can be used in prospective ERA;
- develop good mechanistic effect models which are both manageable and realistic enough;
- integrate systems approaches and multiple (potential) stressors into ERA.

12. Recommendations

The present opinion investigated the coverage of recovery of non-target organisms in current ERA schemes and developed a conceptual and systems approach to address ecological recovery for any assessed products, and invasive alien species that are harmful for plant health. Based on the information gathered in this opinion as well as the systems approach proposed, a number of questions and recommendations have been raised as follows:

- develop approaches to address and interpret uncertainty of recovery in ERA (e.g. in assessing boundaries in model predictions);
- develop approaches to address multiple potential stressors (occurring simultaneously and/or sequentially);
- develop long-term predictions and assessments (following exposure to multiple potential stressors simultaneously and/or sequentially) which should be based on a realistic spatial scale, reflecting the landscape context, rather than single potential stressors assessed at a local scale;
- organise information on species traits of non-target organisms and landscape properties in databases, to assist the selection of focal communities, species, processes and landscapes;
- develop environmental scenarios that can be used in prospective ERAs to inform the design of (semi)field experiments and to apply mechanistic effect models that aim to address the ecological recovery option;
• develop and/or consider existing chemical and biological monitoring programmes that may serve as a reality check of the prospective risk assessment approach;
• consider whether a decision scheme would be useful to assist dialogue among stakeholders, when deciding for SPGs whether the recovery option is appropriate.

References

van den Brink PJ, Baird D, Baveco HJM and Focks A, 2013. The use of traits-based approaches and eco (toxico)logological models to advance the ecological risk assessment framework for chemicals. Integrated Environmental Assessment and Management, 9, e47–e57.

Brock TCM, 2013. Priorities to improve the ecological risk assessment and management for pesticides in surface water. Integrated Environmental Assessment and Management, 9, e64–e74.

van den Brink PJ, Baird D, Baveco HJM and Focks A, 2013. The use of traits-based approaches and eco (toxico)logological models to advance the ecological risk assessment framework for chemicals. Integrated Environmental Assessment and Management, 9, e47–e57.

Brock TCM, 2013. Priorities to improve the ecological risk assessment and management for pesticides in surface water. Integrated Environmental Assessment and Management, 9, e64–e74.

DAISIE (Delivering Alien Invasive Species Inventories for Europe), 2014. European Invasive Alien Species Gateway. Available from http://www.europe-aliens.org/

translate broad policy protection goals into specific operational ones for environmental risk assessments. EMBO Reports, 16, 1060–1063.

EFSA (European Food Safety Authority), 2012. EFSA Journal Special Issue No 1 – Scientific achievements, challenges and perspectives of the European Food Safety Authority: Taking stock of the 10 years activities and looking ahead. Published online on 18 October 2012. Available at: http://www.efsafeurope.eu/en/efsajournal/specialissues.htm

EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms), 2009. Scientific opinion on applications (EFSA-GMO-RX-MON810) for renewal of authorisation for the continued marketing of (1) existing food and food ingredients produced from genetically modified insect resistant maize MON 810; (2) feed consisting of and/or containing maize MON810, including the use of seed for cultivation; and of (3) food and feed additives, and feed materials produced from maize MON 810, all under Regulation (EC) No 1829/2003 from Monsanto. EFSA Journal 2009;7(6):1149, 85 pp. doi:10.2903/j.efsa.2009.1149

Ecological recovery in ERA

www.efsa.europa.eu/efsajournal

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMaSS</td>
<td>Animal, Landscape and Man Simulation System</td>
</tr>
<tr>
<td>BIOHAZ Panel</td>
<td>EFSA Panel on Biological Hazards</td>
</tr>
<tr>
<td>Bt</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CEF Panel</td>
<td>Food Ingredients and Packagings Panel</td>
</tr>
<tr>
<td>DAISIE</td>
<td>Delivering Alien Invasive Species Inventories for Europe</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECHA</td>
<td>European Chemicals Agency</td>
</tr>
<tr>
<td>ECFA</td>
<td>European Crop Protection Association</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERA</td>
<td>environmental risk assessment</td>
</tr>
<tr>
<td>FEEDAP Panel</td>
<td>EFSA Panel on Additives and Products or Substances used in Animal Feed</td>
</tr>
<tr>
<td>FOCUS</td>
<td>Forum for the Co-ordination of pesticide fate models and their USe</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>GMHT</td>
<td>genetically modified herbicide tolerant</td>
</tr>
<tr>
<td>GMO(s)</td>
<td>genetically modified organism(s)</td>
</tr>
<tr>
<td>GMO Panel</td>
<td>EFSA Panel on Genetically Modified Organisms</td>
</tr>
<tr>
<td>GMP</td>
<td>genetically modified plant</td>
</tr>
<tr>
<td>IAS</td>
<td>invasive alien species (specifically, those that are harmful to</td>
</tr>
<tr>
<td></td>
<td>plant health for this opinion)</td>
</tr>
<tr>
<td>IPCS</td>
<td>International Programme on Chemical Safety</td>
</tr>
<tr>
<td>JRC</td>
<td>European Commission's Joint Research Centre</td>
</tr>
<tr>
<td>MA</td>
<td>Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>MDD</td>
<td>minimum detectable difference</td>
</tr>
<tr>
<td>MVP</td>
<td>minimum viable population</td>
</tr>
<tr>
<td>NOR</td>
<td>normal operating range</td>
</tr>
<tr>
<td>NTA</td>
<td>non-target arthropod</td>
</tr>
<tr>
<td>NTO</td>
<td>non-target organism</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PEC</td>
<td>predicted environmental concentration</td>
</tr>
<tr>
<td>PEC<sub>max</sub></td>
<td>maximum predicted environmental concentration</td>
</tr>
<tr>
<td>PEC<sub>twa</sub></td>
<td>time-weighted average predicted environmental concentration</td>
</tr>
<tr>
<td>PLH Panel</td>
<td>EFSA Panel on Plant Health</td>
</tr>
<tr>
<td>PNEC</td>
<td>predicted no effect concentration</td>
</tr>
<tr>
<td>PPP(s)</td>
<td>plant protection product(s)</td>
</tr>
<tr>
<td>PPR</td>
<td>plant protection residue</td>
</tr>
<tr>
<td>PPR Panel</td>
<td>EFSA Panel on Plant Protection Residues</td>
</tr>
<tr>
<td>REACH</td>
<td>Registration, Evaluation, Authorisation and Restriction of Chemicals</td>
</tr>
<tr>
<td>SCENIHR</td>
<td>Scientific Committee on Emerging and Newly Identified Health Risks</td>
</tr>
<tr>
<td>SCHER</td>
<td>Scientific Committee on Health and Environmental Risks</td>
</tr>
<tr>
<td>SPG</td>
<td>specific protection goal</td>
</tr>
<tr>
<td>SPU</td>
<td>service providing unit</td>
</tr>
<tr>
<td>SSD</td>
<td>species sensitivity distribution</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Glossary

- **Actual recovery**
 The return of a perturbed ecological entity or process (e.g. species composition, population density or an ecosystem service) to its normal operating range, or to a level that is not significantly different from that in control or reference systems.

- **Adaptation**
 1. The process of adjustment of an individual organism, population or community to environmental stress. 2. The process of evolutionary modification which results in improved survival and reproductive efficiency. 3. The enhancement of fitness of an organism by any morphological, physiological, developmental or behavioural trait (Lincoln et al., 1982).

- **Adverse (environmental) effect**
 Any effect that causes harm to the normal functioning of plants or animals. Establishing what an adverse effect is and which effect is regarded as environmental harm is a complex process which involves analysing and implementing policy objectives taking into account broader societal and relevant stakeholder values. It requires that risk managers define what is important to protect and the magnitude of the effect that is to be regarded as harmful or intolerable.

- **Agricultural context**
 Land used for crops, pasture, and livestock; the adjacent uncultivated land that supports other vegetation and wildlife; and the associated atmosphere, the underlying soils, groundwater, and drainage networks (Kattwinkel et al., 2012).

- **Alien species**
 According to the EU Directive on Invasive Alien Species an ‘alien species’ means any live specimen of a species, subspecies or lower taxon of animals, plants, fungi or microorganisms introduced outside its natural range; it includes any part, gametes, seeds, eggs or propagules of such species, as well as any hybrids, varieties or breeds that might survive and subsequently reproduce, (see also invasive alien species).

- **Analysis plan**
 Step of the ERA problem formulation phase describing how the formulated risk hypotheses can be tested.

- **Assessment endpoint**
 An explicit expression of the environmental value that is to be protected, operationally defined as an ecological entity and its attributes (Suter et al., 1993).

- **Assessment factor**
 Numerical adjustment used to extrapolate from experimentally determined (dose-response) relationships to estimate the exposure to an agent below which an adverse effect is not likely to occur.

- **Biodiversity**
 The variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems.

- **Biomagnification**
 It is the process whereby the tissue concentrations of a contaminant increase as it passes up the food chain through two or more trophic levels. It is a typical issue for persistent chemicals with a high affinity for fat tissue and/or that are poorly metabolised or excreted.

- **Carrying capacity**
 The maximum number of organisms that can be supported in a given area or habitat; usually denoted by K; the upper asymptote of the logistic equation (Lincoln et al., 1982).

- **Case-by-case**
 Approach by which the required information may vary depending on the type of the potential stressor concerned, its intended use or impact and potential receiving environments, taking into account, inter alia, related stressors already in the environment (generalised from the GMO-specific definition in EC, 2001a).

- **Cisgenesis**
 The genetic modification of a recipient organism with a gene from a crossable – sexually compatible – organism (same species or closely related species). This gene includes its introns and is flanked by its native promoter and terminator in the normal sense orientation. Cisgenic plants can harbour one or more cisgenes, but they do not contain any parts of transgenes or inserted foreign sequences. To produce cisgenic plants any suitable technique used for production of transgenic organisms may be used. Genes must be isolated, cloned or synthesised and transferred back into a recipient where stably integrated and expressed.

- **Community**
 An association of interacting populations, usually defined by the nature of their interactions, by their combined ecological functions, or by the place in which they live (adapted from Ricklefs and Miller, 1999).
Conceptual model
Step of the ERA problem formulation phase describing and modelling scenarios and pathways on how the use of a regulated product may cause harm to a specific protection goal (Raybould, 2010; Wolt et al., 2010; Sanvido et al., 2012). It guides the formulation of testable risk hypothesis.

Cultural service
Non-material benefit obtained from ecosystems (Harrington et al., 2010).

Delayed effect
Effect that occur sometime after exposure (Rand and Petrocelli, 1984).

Demographic trait
A trait that influences the population growth rate and ultimately drives population densities and age distributions (Rubach et al., 2011). Also referred as a life-history trait.

Direct effect
An effect that is mediated solely by the interaction between a specific ecological receptor/target and an environmental stressor.

Dormancy
A state of relative metabolic quiescence in which viable propagules (e.g. seeds, spores, winter or dry-season eggs) do not germinate.

Ecological entity
Any biological and/or ecological unit able to provide an ecosystem service (e.g. individual, population, functional group, community).

Ecological recovery
The return of the perturbed ecological endpoint (e.g. species composition, population density) to its normal operating range.

Ecosystem
A dynamic complex of plant, animal and microorganism communities and their non-living environment interacting as a functional unit (MA, 2003).

Ecosystem function
see Ecosystem process.

Ecosystem process
Action or event that results in the flow of energy and the cycling of matter (Ellis and Duffy, 2008). Examples of ecosystem processes include decomposition, production, water and nutrient cycling (MA, 2003).

Ecosystem service
The benefit people obtain from ecosystems. Ecosystem services include provisioning services such as food and water; regulating services such as flood and disease control; cultural services such as spiritual, recreational, and cultural benefits; and supporting services such as nutrient cycling that maintain the conditions for life on Earth.

Ecosystem structure
Attributes related to the instantaneous physical state of an ecosystem. There are several characteristics to describe ecosystem structure. For example, species population density, species richness or evenness, and standing crop biomass.

Effect
In general, an effect is something that inevitably follows an antecedent (cause or agent). A biological effect is the biological result of exposure to a causal agent.

Environment
Natural environment, encompassing all living and non-living entities occurring naturally on earth or some region thereof (Johnson et al., 1997).

Environmental harm
Measurable adverse change in a natural resource or measurable impairment of a natural resource service which may occur directly or indirectly (EC, 200430).

Environmental risk assessment (ERA)
The evaluation of the probability and seriousness of harmful (or adverse) effects to human health and the environment, whether direct or indirect, immediate or delayed, following exposure to a potential stressor.

Error Type I and II
Type I error arises when a null hypothesis is rejected as false when in fact true, while type II error arises when a null hypothesis is accepted as true when in fact false.

Exposure
Exposure has been defined as the concentration or amount of a particular agent that reaches a target organism, system, or (sub)population in a specific frequency for a defined duration (WHO, 2004).

Exposure assessment goal
An explicit expression of the type of exposure, as well as the spatial and temporal characteristics of the exposure, that has to be assessed for a specific potential stressor, and that needs to be defined in a dialogue between risk assessors and risk managers so that it can be linked to the specific protection goal.

Exposure scenario
A set of conditions or assumptions about sources, exposure pathways, amount or concentrations of agents involved and exposed organisms, systems or (sub) populations (i.e. numbers, characteristics, habitats) used to aid in the evaluation and quantification of exposures in a given situation.

External recovery
Recovery governed by the immigration of individuals by active or passive dispersal.

According to Commission Regulation (EC) No 1831/2003 feed additives are substances, microorganisms or preparations, other than feed material and premixtures, which are intentionally added to feed or water in order to perform, in particular, one or more of the following functions: favourably affect the characteristics of feed or animal products; favourably affect the colour of ornamental fish and birds; satisfy the nutritional needs of animals; favourably affect animal production, performance or welfare; or have a coccidiostat or histomonostatic effect (Article 5(3)).

The relative ability to survive and reproduce of a given genotype or phenotype conferred by adaptive morphological, physiological or behavioural traits.

Those species, taxa, processes and landscapes focused on in ERA. Focal species/taxa are indicative for specific habitats as well as vulnerable to the potential stressor of concern and in this way represent a larger group of other species/taxa to be protected. A focal process is indicative for an essential ecological process vulnerable to the potential stressor of concern. A focal landscape concerns the type of landscape that has to be considered in the environmental scenario in order to allow a realistic worst-case ERA for the focal species/taxa of concern.

A representation of the various paths of energy flow through populations in the community (Ricklefs, 1990).

A collection of organisms with similar functional trait attributes, and that are likely to be similar in their response to environmental changes and effects on ecosystem functioning (Hooper et al., 2002).

A characteristic of species within an ecosystem where certain species contribute in equivalent ways to an ecosystem function such that one species may substitute for another. Note that species that are redundant for one ecosystem function may not be redundant for others.

A measurable property (e.g. mobility, feeding behaviour, trophic level, and place in the food web) of an organism, which has demonstrable links to the organism’s function (Lavorel et al., 1997; Harrington et al., 2010).

Genetic variation between and within species. This can be characterised by the proportion of polymorphic loci (different genes whose product performs the same function within the organism) or by the heterozygous individuals in a population (Frankham et al., 2002).

An organism, with the exception of human beings, in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination (EC, 2001a).

The habitat of a species is the place where an organism normally lives, often characterised by a dominant-plant form (e.g. forest habitat) or physical characteristic (stream habitat) (Ricklefs, 1990).

The characteristics of a potential stressor that can cause harm to or adverse effects on human health and/or the environment.

A phenomenon where the trajectory of ecological recovery after removal of an environmental stressor is not the same as the trajectory of ecological deterioration.

Surface covered by the crop plants including the space between the crop rows.

An indirect effect involves effects of a stressor being transmitted to a specified receptor through an indirect route involving one or more other, intermediary, receptors. For example, a predatory non-target organism could be affected indirectly by a stressor in several ways, including effects of the stressor reducing the abundance of its prey species, its intraspecific or interspecific competitors, its pathogens or its parasites.

The crop area and its boundaries that are managed by the farmer in the context of crop management.

Population recovery facilitated by the in situ survival of individuals or resting propagules (e.g., seeds or ephippia) and their subsequent growth and/or reproduction, within the area affected (previously or currently) by a stressor (i.e., excluding population recovery facilitated by immigration – see also external recovery).

A genetic modification of a recipient organism that leads to a combination of different gene fragments from donor organism(s) of the same or a sexually compatible species as the recipient. These may be arranged in a sense or antisense orientation compared to their orientation in the donor organism.
Intragenesis involves the insertion of a reorganised, full or partial coding region of a gene frequently combined with another promoter and/or terminator from a gene of the same species or a crossable species.

<table>
<thead>
<tr>
<th>Invasive alien species (IAS)</th>
<th>Invasiveness</th>
<th>Strictly, the term 'invasive' refers to the tendency of a species to disperse and extend its spatial range, or colonise systems from which it was previously absent. An organism is ‘alien’ if it does not naturally occur in a system or a region.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants, animals, pathogens and other organisms that are non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health. The EFSA plant health panel assesses risks posed by invasive alien species that are harmful to plant health. Therefore, within the context of this opinion, the term IAS refers specifically to invasive alien species that are harmful to plant health.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Landscape</th>
<th>Any geographical area of interest that may encompass a mixture of agricultural and non-agricultural land-use types (e.g. field and off-field), at spatial scales which are defined according to the ecological entities of concern.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentic ecosystem</td>
<td>Ecologists divide continental waters into two categories: lentic and lotic. A lentic ecosystem has still waters. Examples include: creeks, streams, runs, rivers, springs, brooks, and channels. A lentic ecosystem has still waters.</td>
</tr>
<tr>
<td>Lotic ecosystem</td>
<td>See Lentic ecosystem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Life-history trait</th>
<th>See demographic trait.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Measurement endpoint</th>
<th>A measurable quality related to the valued characteristics chosen for the assessment (Suter et al., 1993). Within the context of ERAs that fall under the remit of EFSA this concerns a quantifiable response to a potential stressor that is related to the specific protection goal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metapopulation</td>
<td>An overall population comprising populations of the same species connected through immigration and emigration (Hanski and Gilpin, 1991).</td>
</tr>
<tr>
<td>Minimum viable population</td>
<td>An estimate of the minimum number of individuals required for a high probability of survival of a population over a given period of time.</td>
</tr>
<tr>
<td>Modelling</td>
<td>An attempt to describe the behaviour of a natural system or to predict the likelihood of an event occurring within a system; it may utilise mathematical formulas and computer simulations.</td>
</tr>
<tr>
<td>Non-target arthropod (NTA)</td>
<td>An arthropod species that is not intended to be affected by the potential stressor under consideration.</td>
</tr>
<tr>
<td>Non-target organism (NTO)</td>
<td>An organism that is not intended to be affected by the potential stressor under consideration.</td>
</tr>
<tr>
<td>Normal operating range (NOR)</td>
<td>The acceptable range of values of a measurement endpoint that is normally observed during a predefined period for a reference population, community, ecosystem or process.</td>
</tr>
<tr>
<td>Off-crop area</td>
<td>The area where the product is not intentionally applied.</td>
</tr>
<tr>
<td>Off-field area</td>
<td>The area outside the managed ‘in-field area’.</td>
</tr>
<tr>
<td>Pest</td>
<td>The concept of pest organisms is anthropocentric and thus a pest is defined as any organism that is perceived by humans to interfere with their activities. Ecologically there are no such organisms as pests. Organisms in several phyla are considered to be pests: e.g. arthropods, nematodes, molluscs, vertebrates. In particular, any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products are called plant pests (FAO, 2005).</td>
</tr>
<tr>
<td>Plant Protection Product (PPP)</td>
<td>A substance (or device) used to protect (crop) plants from damage by killing or reducing pest organisms or by mitigating their effects.</td>
</tr>
<tr>
<td>Population</td>
<td>A group of individuals of the same species.</td>
</tr>
<tr>
<td>Potential recovery</td>
<td>The disappearance of a stressor to a level at which it no longer has adverse effects on the ecological entities of interest and after which recovery of impacted populations theoretically can start if there is a ready supply of propagules (e.g. offspring of surviving individuals, or recolonisation).</td>
</tr>
<tr>
<td>Potential stressor</td>
<td>Any physical, chemical or biological entity resulting from the use of a regulated product or the introduction of an invasive alien species related to the food/feed chain that is assessed in any area of EFSA’s remit and that can induce an adverse response in a receptor (Romeis et al., 2011). Potential stressors may adversely affect specific natural resources or entire ecosystems, including plants and animals, as well as the environment with which they interact.</td>
</tr>
<tr>
<td>Press disturbance</td>
<td>A relatively long-term disturbance which could be due to gradual or cumulative pressure on a system. In ERA it concerns a long-term response of an endpoint following a single or repeated exposure to one or more stressors.</td>
</tr>
<tr>
<td>Problem formulation</td>
<td>Phase of environmental risk assessment which includes a preliminary description of exposure and environmental effects, scientific data and data needs, key factors to be considered, and the scope and objectives of the assessment. This phase produces the risk hypotheses, conceptual model and analysis plan, around which the rest of the assessment develops (Raybould, 2006; Wolt et al., 2010).</td>
</tr>
<tr>
<td>Protection goals</td>
<td>The objectives of environmental policies, typically defined in law or regulations (Romeis et al., 2011).</td>
</tr>
<tr>
<td>Provisioning services</td>
<td>Products obtained from ecosystems (Harrington et al., 2010).</td>
</tr>
<tr>
<td>Pulse disturbance</td>
<td>A relatively short-lived disturbance.</td>
</tr>
<tr>
<td>Receiving environment</td>
<td>The range of environments into which the GMO(s) and their by-products will be released or may escape or be distributed to through active or passive spread and into which the recombinant DNA may spread are defined as receiving environments (adapted EFSA GMO Panel, 2013a).</td>
</tr>
<tr>
<td>Recovery</td>
<td>Ecological recovery is the return of the perturbed ecological endpoint (e.g. species composition, population density) to its normal operating range.</td>
</tr>
<tr>
<td>Recovery option</td>
<td>Specific protection goal option accepting some population-level effects of the potential stressor if ecological recovery takes place within a tolerable time period.</td>
</tr>
<tr>
<td>Recovery time</td>
<td>The time period from when a stressor has dropped to a level at which it no longer has adverse effects until the moment that the ecological entity or process has returned to its normal operating range.</td>
</tr>
<tr>
<td>Reference system</td>
<td>The conditions in which the ecological entity of interest exists without the stressor (s) of interest. This could be a pristine ecosystem, or a non-pristine system (e.g. control plots in a field study). The reference system may be relevant spatially (e.g. concurrent control plots) and/or temporally (e.g. the predisturbance condition).</td>
</tr>
<tr>
<td>Refuge</td>
<td>An area in which an ecological entity can survive through a period of unfavourable conditions.</td>
</tr>
<tr>
<td>Regulated products</td>
<td>Claims, materials, organisms, products, substances and processes submitted to EFSA for evaluation in the context of market approvals/authorisation procedures for which an ERA is required.</td>
</tr>
<tr>
<td>Regulating services</td>
<td>Benefits obtained from regulation of ecosystem processes (Harrington et al., 2010).</td>
</tr>
<tr>
<td>Resilience</td>
<td>The amount of disturbance that can be absorbed by an ecosystem before the system redefines its structure (i.e. deviates from its normal operating range), or the time (recovery time) it takes for the ecosystem to return to a stable state, within the normal operating range following the disturbance (Gunderson, 2000).</td>
</tr>
<tr>
<td>Resistance</td>
<td>(1) A genetic adaptation allowing an organism to cope with the effect of exposure to a stressor to which it once was susceptible. (2) The property of an ecosystem to resist change when exposed to a stressor.</td>
</tr>
<tr>
<td>Risk</td>
<td>The likelihood of consequences (of specified type, magnitude and duration) arising if an ecological entity is exposed to a specified stressor.</td>
</tr>
<tr>
<td>Risk hypothesis</td>
<td>A tentative explanation of how the proposed actions, such as the cultivation of GMO crops, may cause harm. (Romeis et al., 2011).</td>
</tr>
<tr>
<td>Risk management</td>
<td>Decision-making process involving considerations of political, social, economic and technical factors with relevant risk assessment information relating to the hazard.</td>
</tr>
<tr>
<td>Service providing unit (SPU)</td>
<td>The systematic and functional components of biodiversity necessary to deliver a given ecosystem service at the level required by service beneficiaries (Luck et al., 2003; Vanderwalle et al., 2008).</td>
</tr>
<tr>
<td>Shannon entropy</td>
<td>The Shannon entropy (Shannon, 1948) is the first, and the most widely known, measure of uncertainty and is widely applied in ecology, e.g. as an index of species richness (Whittaker, 1972).</td>
</tr>
<tr>
<td>Sink population</td>
<td>A local subpopulation within a spatially-structured population that does not produce enough offspring to maintain itself through future generations without immigrants from other populations.</td>
</tr>
<tr>
<td>Source population</td>
<td>A local subpopulation within a spatially-structured population that produces an excess of offspring above those needed to maintain itself through future generations.</td>
</tr>
<tr>
<td>Species sensitivity distribution</td>
<td>Models of the variation in sensitivity of species to a particular stressor (Posthuma et al., 2002). They are generated by fitting a statistical or empirical distribution function to the proportion of species affected as a function of stressor concentration or dose. Traditionally, species sensitivity distributions (SSDs) are created using data from single-stressor laboratory toxicity tests, such as median lethal concentrations (LC50s).</td>
</tr>
<tr>
<td>Specific protection goal (SPG)</td>
<td>An explicit expression of the environmental value to be protected, operationally defined through five interconnected dimensions (ecological entity, attributes, spatial and temporal scales, magnitude of tolerable effects. The concept of SPG is consistent with ‘assessment endpoint’.</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Sphere of influence</td>
<td>The sphere of influence of a potential stressor is more than the application area. It includes the fate of the (chemical) potential stressor (e.g. accumulation in food chains) and (spatial) propagation of indirect effects.</td>
</tr>
<tr>
<td>Stressor</td>
<td>Any physical, chemical, or biological entity that can induce an adverse response in a receptor.</td>
</tr>
<tr>
<td>Supporting services</td>
<td>Services necessary for the production of all other ecosystem services (Harrington et al., 2010).</td>
</tr>
<tr>
<td>Surrogate species</td>
<td>A species selected for laboratory testing because it represents a taxonomic or functional group of organisms that should be addressed in the risk assessment (Romeis et al., 2011).</td>
</tr>
<tr>
<td>Threshold option</td>
<td>Specific protection goal option accepting no (or negligible) population-level effects of exposure to a potential stressor.</td>
</tr>
<tr>
<td>Toxicodynamics</td>
<td>The process of interaction of chemical substances with target sites and subsequent reactions leading to adverse effects.</td>
</tr>
<tr>
<td>Toxicokinetics</td>
<td>The process of uptake of potentially toxic substances by the body, the biotransformation they undergo, the distribution of the substances and their metabolites in the tissues, and the elimination of the substances and their metabolites from the body.</td>
</tr>
<tr>
<td>Trait</td>
<td>A well-defined, measurable, phenotypic or ecological character of an organism, generally measured at the individual level, but often applied as the mean state of a species (McGill et al., 2006).</td>
</tr>
<tr>
<td>Time horizon</td>
<td>Fixed point of time at which certain processes will be evaluated.</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>Uncertainty is the inability to determine the true state of affairs of a system (Haimes, 2015) and it may arise in different stages of risk assessment due to lack of knowledge and to natural variability (EFSA SC, in press (b)).</td>
</tr>
<tr>
<td>Voltinism</td>
<td>A trait of a species pertaining to its number of broods or generations per year or per season.</td>
</tr>
<tr>
<td>Vulnerable species</td>
<td>A species with a relatively high sensitivity to a specific stressor, a high chance of exposure and/or high risks of indirect effects, plus a poor potential for population recovery.</td>
</tr>
</tbody>
</table>
Appendix A – Overview on recovery and specific protection goals for plant protection products, genetically modified organisms, feed additives and invasive alien species

<table>
<thead>
<tr>
<th>Recovery</th>
<th>Ecological entity</th>
<th>Attribute</th>
<th>Magnitude of tolerable effect</th>
<th>Temporal scale of tolerable effect</th>
<th>Spatial scale of tolerable effect</th>
</tr>
</thead>
</table>
| Plant Protection Products (PPPs) Environmental risk assessment (ERA) is a standard part of the application procedure of active substances to place PPPs on the European Union (EU) market

For vertebrates (birds, mammals, fish) recovery option is void since individual mortality and effects on reproduction are not allowed.

For other groups of organisms recovery is assessed through semi-field (e.g. mesocosm) or field studies when a population or trait group reaches back the control level with a certain statistical power.

For aquatic organisms:
- **Ecological recovery in ERA** is focused on ecosystems that are exposed to the effects of plant protection products. The effects are assessed through the application of plant protection products and the subsequent recovery of the ecosystem.

For non-target terrestrial invertebrates:
- Recovery option: The total period of effect due to repeated application of the PPP should not be longer than weeks to months (the recovery option in the new Guidance Document is based on recovery within 8 weeks of the most sensitive measurement endpoint).

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: The total period of the effect due to (repeated) application of the PPP should not be longer than weeks to months (the recovery option in the new Guidance Document is based on recovery within 8 weeks of the most sensitive measurement endpoint).

For aquatic organisms:
- Recovery option: The total period of the effect due to repeated application of the PPP should not be longer than weeks to months (the recovery option in the new Guidance Document is based on recovery within 8 weeks of the most sensitive measurement endpoint).

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.

For aquatic organisms:
- Recovery option: Focus on vulnerable species of the sensitive taxonomic groups. The magnitude and duration of acceptable effects in (semi)field studies is integrated in effect classes.

For non-target terrestrial invertebrates:
- Recovery option: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that NTAs are exposed in-field to applied rates which are two times greater than the rates which lead to 50% effects on mortality and reproduction and in the off-field to rates which are 5 times lower than the rates which lead to a 50% effect.

For non-target plants:
- Recovery option: Negligible effects.
<table>
<thead>
<tr>
<th>Recovery</th>
<th>Ecological entity</th>
<th>Attribute</th>
<th>Magnitude of tolerable effect</th>
<th>Temporal scale of tolerable effect</th>
<th>Spatial scale of tolerable effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-target plants: The actual magnitude of acceptable effects on populations is not quantified. It is tolerated that plants and seeds are exposed to concentrations which are 5 times lower than the EC50. Microbes: +/- 25% effect on nitrogen and carbon mineralisation</td>
<td>and earthworms</td>
<td>Non-target plants: No temporal scale defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Microbes: 100 days</td>
<td></td>
</tr>
</tbody>
</table>

Genetically Modified Organisms (GMOs) – ERA is a mandatory part of the EU market registration procedure of GMOs.

Potential adverse effects (including direct, indirect, immediate, delayed and cumulative long-term effects) on the environment are assessed on a case-by-case basis. There is no systematic analysis of the characteristics to estimate actual recovery. However, recovery is explicitly mentioned in EFSA GMO Panel (2010a,b, 2011) and Commission Decision 2002/623/EC.

The EFSA GMO Panel (2010b) stresses the need to define species and ecological functions selected on a case-by-case basis. For the selection of non-target test species (focal species), the GMO Panel proposes a four-step procedure and provides examples. Step 1: Identify important ecosystem functions and services in the relevant agroecosystems and the nearby environments and the species involved. Step 2: Identify the main species linked to the functional groups of non-target species (indicative table provided). Step 3: Ranking of species based on ecological criteria. Step 4: The selection of assessment and measurement endpoints depends on the GMO (e.g. trait, use and environment) and therefore is determined on a case-by-case basis during problem formulation. The EFSA GMO Panel (2010b) provides examples for species attributes such as mortality, reproduction, etc. and related ecological functions such as pollination, regulation of pest populations, etc. The road map presented in the EFSA GMO Panel (2010b) scientific opinion proposes a six-step procedure to identify the relevant attributes case-by-case.

Potential adverse effects (environmental harm) are quantified, using a comparative approach. Limits of concern are set on a case-by-case basis, in order to assess the biological relevance of observed differences between the GMO and the baseline of comparison (which can be the conventional counterpart or conventional cropping systems including their associated farm management practices). The EFSA GMO Panel (2010b) proposes to evaluate the significance temporal effects of any damage due to the GM plant on a case-by-case basis, particularly in relation to the population size and the potential for recovery of the NTO. The limits of concern are specific for each assessment endpoint and their significance related to recovery.

According to the EFSA GMO Panel (2010b), the spatial scale (receiving environment) for considering effects on NTO consists of the GM cultivated fields, their margins, the wider environment and, where relevant, aquatic ecosystems. The Panel proposes to evaluate the significance of spatial effects of any damage due...
<table>
<thead>
<tr>
<th>Recovery</th>
<th>Ecological entity</th>
<th>Attribute</th>
<th>Magnitude of tolerable effect</th>
<th>Temporal scale of tolerable effect</th>
<th>Spatial scale of tolerable effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Additives – Requirement of an ERA as part of the authorisation process (no mention of recovery)</td>
<td>Populations in the terrestrial and aquatic environment as defined in Regulation (EC) No 429/2008.</td>
<td>Not defined</td>
<td>Not defined</td>
<td>Not defined</td>
<td></td>
</tr>
</tbody>
</table>

Invasive alien pests (IAS) that are harmful to plant health – Council Directive 2000/29/EC provides the legal basis for the EU’s plant health regulations (EFSA PLH Panel, 2011). Although it does not lay down specific requirements for an ERA, the assessment of potential consequences on the environment of introduction and spread of harmful organisms is included in the internationally recognised standards for pest risk assessment (IPPC (International Plant Protection Convention), 2014). The assessment of consequences is not normative as it is for PPPs and GMOs, but the PLH Panel assesses impacts to support risk management decisions by the European Commission (EC). In the guidance for ERA (EFSA PLH Panel, 2011), the term ‘recovery’ is used nor defined, but the opinion makes ample use of the concept of ‘resilience’. In the context of this opinion, resilience is defined as the ability of an ecosystem to recover and retain its structure and function following a transient and exogenous shock. In the ecological risk assessment of the apple snail (EFSA PLH Panel, 2014), the effects of resistance, resilience and management on snail population dynamics in the short (5 years) and the long term (30 years) were estimated. Recovery is explicitly accounted for in the PLH approach to ecological risk assessment for plant pests, by considering ecosystem resilience at different time scales. Ecosystem resilience is defined by the

The ecological entity is identified in accordance with the expected impacts of the alien species. In the case of the apple snail, shallow fresh water areas were identified Attributes of the ecological entity at risk are identified ad hoc, using expert elicitation, in consideration for the effects on biodiversity and ecosystem services. In the The PLH Panel uses in its assessment of impact ratings on a five-point ordinal scale: minimal, minor, moderate, major, and massive (EFSA PLH Panel, 2014, p. 74). The temporal scale is in the order of years to decades of years. The spatial scale corresponds to the extent to which the pest has an impact within the
<table>
<thead>
<tr>
<th>Recovery</th>
<th>Ecological entity</th>
<th>Attribute</th>
<th>Magnitude of tolerable effect</th>
<th>Temporal scale of tolerable effect</th>
<th>Spatial scale of tolerable effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>ecosystem capacity to cope with environmental change, through buffering,</td>
<td>as the ecological</td>
<td>case of the apple snail, three classes of attributes (‘traits’ in the</td>
<td>Specific guidance is given to assist the risk assessor in determining the rating score.</td>
<td></td>
<td>selected</td>
</tr>
<tr>
<td>adaptation and re-organisation and maintenance of key ecosystem functions.</td>
<td>entity at risk.</td>
<td>idiom of the PLH Panel) were identified: attributes related to the</td>
<td>Based on ratings by multiple assessors, an average risk rating and an uncertainty score are</td>
<td></td>
<td>timeframe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>macrophytes, attributes related to water quality, and attributes related</td>
<td>determined. The PLH Panel does not compare the assessment outcome to normative endpoints,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to biodiversity.</td>
<td>which is the remit of the risk manager.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix B – Properties of the potential stressors regarding their trends in use in EU and their exposure and effects

B.1. Plant Protection Products (PPPs)

B.1.1. Types of PPPs

Plant protection products can be classified by target organism such as herbicides (affecting algae and vascular plants), insecticides (affecting insects and other arthropods), fungicides (affecting fungi and Oomycetes), nematicides (kill nematodes), acaricides (control mites) and molluscidides (affecting snails and slugs).

B.1.2. Trends in use

Agricultural land covered 44% of the European Union’s (EU’s) territory or 137 million hectares in 1997. Depending on the crop and production system different amounts of pesticides are applied. The total amount of PPPs used in the EU was more than 200,000 tons in Europe (Eurostat, 2007). The usage of pesticides increased steadily in the 1990s, stabilising in the late 90s and then declining continuously from 1999 onwards. The trend of declining volumes of pesticides use after 2003 is confirmed by industry sales data from the European Crop Protection Association (ECPA) for the years 2009 and 2010. Reasons for the declining amounts of pesticides may be due to the review, at EU level, of authorisations of PPPs on the market which has led to the withdrawal of products used in large amounts, and their replacement by-products used at lower doses (i.e. pesticides applied at a few grams per hectare instead of kilograms per hectare). This decrease, since the end of the 1990s, is mainly due to the reduction in the use of fungicides which represent the bulk of all PPPs used in the EU. In contrast to fungicides, there was an increase in the use of herbicides, mainly applied to arable crops. The amount of insecticides applied doubled from 1996 to 2000 and has slightly reduced since then. The amounts of pesticides used differ depending on the crop. In some crops such as fruits and vegetables, greater amounts of pesticides (in particular fungicides) per hectare are applied compared to arable crops. The sustainable use directive (Directive 2009/128/EC) aims at further reduction and safer use of pesticides including training of pesticide users, awareness raising, minimising or banning the use of pesticides in critical areas for environmental and health reasons, and promoting the principles of integrated pest management.

Note that a decrease in the amounts of pesticides used may not imply a decrease in the risk to the environment, since many active compounds which are used nowadays present a higher toxicological potential than compounds used in the past. However, many current pesticides have a higher specificity to target species than compounds used in the past.

B.1.3. Exposure and effect assessments

When considering exposure to PPPs and exposure conditions that influence population-level effects and recovery it is important to note that the term exposure may be used differently in fate/exposure modelling and in effects modelling. The result of fate/exposure modelling is the spatial and temporal distribution of the predicted environmental concentration (PEC) of the PPP in a relevant environmental compartment, also referred to as the exposure profile (see e.g. EFSA PPR Panel, 2013a). In current exposure assessments on the basis of e.g. FOCUS models and scenarios (http://focus.jrc.ec.europa.eu/, online), however, the focus is on predicting peak (PEC\text{max}) and time-weighted average exposure concentrations (PEC\text{twa}) as well as temporal exposure profiles for a limited number of in-crop and off-crop situations, and less on spatially explicit exposure modelling at the landscape level. Since environmental concentrations of a PPP may vary both in time and space, the spatial–temporal statistical distribution of exposure concentrations together with the percentile to be taken from this spatial–temporal distribution are essential parts of exposure assessment goals underlying ERA. The selection of the appropriate statistical population of exposure concentrations of course should also depend on the spatial–temporal configuration (e.g. related to home range) of the (most vulnerable life-stage of the)
taxon/functional group at risk (see e.g. EFSA PPR Panel, 2013a; Appendix A). If an exposure estimate is computed as an average of multiple data points (over time, space, or both), there is uncertainty in the resulting estimate of the mean. Therefore, it is customary to select a certain percentile as a conservative estimate of the true PEC. In pesticide exposure assessment in the EU, it is common practice to select the overall 90th percentile PEC\textsubscript{max} for a limited number of selected in-crop and off-crop situations as defined in current FOCUS exposure scenarios.

In effects modelling, ‘exposure’ ideally is the concentration that the organism is exposed to internally at the relevant target-sites. This internal exposure results from a combination of external exposure concentrations in relevant environmental compartments/patches of habitat where the organisms dwell (PECs provided by fate/exposure modelling), ecology and behaviour of the organism that affect uptake of the PPP, and internal toxicokinetics. In practice, however, available toxicity data are expressed in terms of external exposure concentrations (e.g. in water, soil, food) determined under more or less standardised test conditions, particularly in lower tiers. Since spatial and temporal variability in exposure concentrations of PPPs is more the rule than the exception for the majority of organisms in agricultural landscapes and edge-of-field surface waters, the appropriate linking of external exposure concentration to internal exposure concentrations in organisms is an important exercise for which toxicokinetic/toxicodynamic models (e.g. Jager et al., 2011) may be used.

As mentioned above, in current ERA for PPPs the exposure assessment is based on selected models and scenarios with a limited spatial resolution (e.g. FOCUS) and the approach followed is presumed to be realistic worst case, particularly with respect to PEC\textsubscript{max} calculations for individual active ingredients. Whether the selected exposure scenarios are realistic worst case as well for assessing long-term exposure concentrations remains to be evaluated. Furthermore, to appropriately address external recovery potential for potentially vulnerable populations, information on the spatial and temporal dynamics of PPPs exposure in the agricultural landscape under evaluation may be required. The results of fate/exposure modelling as currently used may work well for individuals or populations that are stationary and/or where internal recovery mechanisms play an important role (where only temporal dynamics matter). In this case, pesticide fate and effects are investigated in separate modelling to predict recovery. However, there are difficulties in implementing the approach where individuals are mobile and external recovery processes play an important role, or if the potential stressor is mobile in the environment. Populations can extend over large areas (e.g. individuals of some bird species can visit different areas in Europe). When individuals are mobile the spatial aspect of exposure becomes particularly important in determining the time-variable internal concentration of exposed organisms. If the potential stressor is applied to fragments of the whole population then, unless the population is completely sedentary and the proportion of the population exposed easily calculated, it is not possible to separate effects and exposure in determining recovery.

Abiotic, biotic and agronomic parameters describing the environmental scenario and the behaviour of organisms form complex interactions. Currently, there is no agreed procedure on how to derive a distribution from all these factors and choose a certain percentile from that due to the overwhelming number of potential factors involved (EFSA PPR Panel, 2014). The alternative is to develop standard environmental scenarios in such a way that the realistic extremes are taken into account. Such scenarios would consider both the spatial and temporal profile of potential stressors as the spatio-temporal context of the landscape with its land uses and non-crop habitats and other potential refuges that may act as sources for recovery. It is suggested that to achieve this, a dynamic modelling of exposure in space and time is carried out and linked directly with the effects modelling (EFSA PPR Panel, 2015). For example, this type of approach has been used in aquatic systems to study population-level risks of pesticide exposure in an interconnected system of edge-of-field surface waters (Focks et al., 2014a), and in terrestrial systems in animal, landscape and man simulation system (ALMaSS) models (e.g. Topping et al., 2014).

B.2. Genetically modified organisms (GMOs)

B.2.1. Types of GM plants and animals

For commercial cultivation, over 10 food and fibre crops were approved in 2014 (e.g. for the major commodities: maize, soybean, cotton, fruits and vegetables such as papaya, eggplant and squash). As of 2014, the Innate™ potato, Bacillus thuringiensis (Bt) eggplant, and biotech sugarcane are newly approved crops in the US, Bangladesh and Indonesia, respectively. These crops aim at boosting benefits to the consumer and increase crop productivity for farmers. Their traits include drought
tolerance, insect and disease resistance, herbicide tolerance, increased food quality and improved properties for processing.

Currently, no GM animals or derived products are on the EU market, nor have any application for GM animals been received by EFSA. However, scientific developments suggest submissions may be made in the future across a range of species. Therefore, EFSA has developed comprehensive risk assessment guidelines for GM animals (EFSA GMO Panel, 2013a; Devos et al., 2014; Mestdagh et al., 2014).

B.2.2. Trends in use

In 2014, GMPs were commercially cultivated worldwide, over a total area of 181.5 million hectares (James, 2014) which accounts for approximately 12% of all arable land presently in use for agricultural crop production. Major GM crops commercially grown are soybean, maize, cotton, oilseed rape, sugar beet and alfalfa with either herbicide tolerant or insecticide resistant, and both traits combined (stacked) in the same plants. During the 19 years of commercial GM crop cultivation (1996–2014), herbicide tolerance has consistently been the dominant trait representing, 57% of the total GM crop acreage in 2014, whereas insect-resistant crops and stacked-herbicide tolerant and insect resistant GM crops were grown on 15 and 28%, of the total GM crop acreage, respectively.

In the EU, the only approved GM crop for commercial cultivation at present is the insect resistant maize MON810. Maize MON810 has been cultivated in the EU since 1999, and produces the insecticidal protein Cry1Ab from Bt, which confers resistance to certain lepidopteran pests, such as the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) and the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). In 2013, maize MON810 was grown in Spain (136,962 ha), Portugal (8,202 ha), the Czech Republic (2,560 ha), Romania (835 ha) and Slovakia (100 ha) over a total area of approximately 148,659 ha. In Spain, the acreage of maize MON810 was over 131,000 ha in 2014. The total Bt-maize acreage grown in the EU in 2014 corresponds to roughly 1% of the total maize area of approximately 13 million hectares cultivated in the EU (Meissle et al., 2011). However, in certain areas of Spain with high-corn borer infestations (e.g. in Catalonia), Bt-maize adoption reached 84% in 2010 (James, 2010). Maize Bt176 was grown from 1998 to 2004 in the EU. GM potato EH92-527-1 has been grown in 2010 and 2011 on a maximum acreage of 225 ha in Sweden, Czech Republic and Germany, but its cultivation was discontinued in 2012.

B.2.3. Exposure and effect assessments

The guiding principle of assessing exposure and effects arising from GMOs consists of comparing, in a case-by-case approach, the genetic, physiological, ecological and agronomic characteristics of the GMP with those of the conventional counterpart under comparable conditions. Differences in effects are a function of the plant characteristics, the introduced trait, intended use and the quality of the receiving environment (Roberts et al., 2013). Pathways and levels of exposure will vary accordingly, and it may not be possible to estimate the exposure precisely without detailed knowledge of these characteristics. Likelihood of exposure can be expressed either qualitatively using an ordered categorical description (such as ‘high’, ‘moderate’, ‘low’ or ‘negligible’) or quantitatively as a relative measure of probability (from zero to one)\(^34\). However, if qualitative terms are used to express such likelihoods, then the link between likelihood and probability should be accounted for. Thus, whatever term is chosen, an indication of the range should be given, within a numeric scale of 0–1, to which the term is intended to refer. For example, ‘the likelihood of exposure of a non-target lepidopteran species to Bt toxin (Cry1Ab protein) in field margins was estimated to be moderate, where ‘moderate’ in this context means within the probability range of 0.1–0.4.’ (EFSA GMO Panel, 2010a).

Based on the above mentioned information, a list of potentially exposed NTOs (plants, animals, microorganisms) in-crop and off-crop is established case-by-case. Conceptual models with worst-case scenarios are proposed that will guide the assessment of effects on selected NTOs in different ecosystems (terrestrial, aquatic) belonging to the receiving environment (Sears et al., 2001; Garcia-Alonso et al., 2006; Romeis et al., 2008; Carstens et al., 2010, 2012). Hypotheses of exposure and effects on populations of selected organisms are then formulated and tested in a stepwise approach.

The sexual exchange of genes between crops and their wild relatives has occurred ever since the first plants have been domesticated (Connor et al., 2003). However, the potential acquisition of transgenes from GM plants by wild relatives has received major attention. The acquired transgenes could directly alter the genetic diversity/integrity of the progeny of recipient plants, or their ability to persist and/or occupy larger or new ecological niches (invasiveness), affecting their population dynamics/growth. These altered dynamics/growth of recipient populations could in turn impact associated flora and fauna, indirectly altering their abundance. Depending on the set protection goals, these changes could constitute environmental harm (Sanvido et al., 2007; EFSA GMO Panel, 2010a; Devos et al., 2012).

B.3. Feed additives

B.3.1. Types of feed additives

Article 6 of Commission Regulation (EC) No 1831/2003 defines the five categories of feed additives as follows: (1) technological (preservatives, antioxidants, emulsifiers, thickeners, stabiliser, gelling agents, binders, radionuclide control, anticaking agents, acidity regulators, silage additives, denaturants), (2) sensory (colourants and flavourings), (3) Nutritional (vitamins, trace elements, aminoacids, urea), (4) zootechnical (digestibility enhancers, gut flora stabilisers, favourably affecting the environment, other zootechnical additives), and (5) coccidiostats and histomonostats.

B.3.2. Trends in use

Feed additives used in the EU are those that have been granted an authorisation as requested under Regulation (EC) No 1831/2003. Those additives are granted authorisation for specific animal species, defined conditions of use and for a period of 10 years. In accordance with Article 17 of Regulation (EC) No 1831/2003, the Commission has established the EU Register of feed additives, which is divided into two parts. The first part contains the list of modifications to the Register and the current authorisations and the second contains the list of additives for which no application for re-evaluation was submitted before the deadline of 8 November 2010.

Most data on the volumes of feed additives used in the EU are held by private companies and treated as confidential. The data available in the open literature are scarce and scattered, making it difficult to determine spatial and temporal patterns of use.

B.3.3. Exposure and effect assessments

The amounts of feed additives that may potentially reach the environment depend on the quantity of manure/slurry produced by livestock, techniques used in (in- or outdoor) animal husbandry, and are limited by the legislated maximum amounts of nitrogen that can be applied to arable land.

For the terrestrial and aquatic compartments, the ERA of feed additives (and their metabolites) to non-target species is conducted following a stepwise approach (Commission Regulation (EC) No 429/2008). The first phase aims at characterising the risk from exposure by calculating PECs in the respective compartment of concern. It is assumed that if the PEC does not exceed a preset trigger value during the time of the application, it will not be of concern for the rest of the year when the additive is not in use. Therefore, unless the FA is persistent, there is no build-up over time and recovery is not relevant since there was no expected effect in the first place. If a risk is highlighted during the first phase, additional information is collected to assess the potential for feed additives to affect non-target species in the environment (i.e. PEC/PNEC ratios, which are used as indicators of risk and also called risk quotients, are calculated to determine whether the risk is acceptable or not). The FOCUS tool developed for the risk assessment of PPPs has been adopted for the refinement of PECs of feed additives (EFSA FEEDAP Panel, 2007).

To determine a meaningful exposure assessment for a FA originating from terrestrial farm animals, realistic worst case scenarios based on typical manure/slurry management strategies are made. For example, additional information on agricultural practice and metabolism and/or degradation (e.g. the metabolic fate of the additive in fish, and other processes that may change its bioavailability) are

35 http://ec.europa.eu/food/food/animalnutrition/feedadditives/registeradditives_en.htm
36 http://ec.europa.eu/food/food/animalnutrition/feedadditives/docs/comm_register_feed_additives_1831-03.pdf
37 http://ec.europa.eu/food/food/animalnutrition/feedadditives/docs/comm_register_feed_additives_1831-03_annex2.pdf
collected to refine the PEC assessment. However, in most cases, toxicity data for relevant species are missing (see EFSA FEEDAP Panel, 2007 for a review of the strategies used in the EU and the gaps and lack of detailed information on this topic). Therefore, final decisions are usually made on a PEC falling below prespecified (although arbitrary) threshold values. Because of the limited toxicological potential of most feed additives these threshold levels are believed to indicate negligible risks (although for many feed additives, it is not checked experimentally).

Copper and zinc accumulation in sediments underneath sea cages has been highlighted as being of potential toxicological concern that could attenuate recolonisation of biota following cessation of fish farming in an area (Champeau, 2013). Although copper in sediments comes primarily from antifouling treatment of the net pens, the accumulation of zinc is mostly caused by zinc supplementation of fish feeds. Using the maximum allowed concentration in feed in the EU and the simple exposure models recommended by FEEDAP in its technical guidance, it was calculated that zinc concentrations in sediment under sea cages would not exceed 182 mg/kg sediment, which is below the PNEC (Monteiro et al., 2010). However, measurements of sediments collected near salmon farms in Canada and New Zealand showed that zinc in sediments are in reality often above PNEC even though zinc contents in feeds were similar to those in the European market (Morrisey et al., 2000; Brooks and Mahnken, 2003; Champeau, 2013). This is clearly an issue that deserves further attention.

Supplementation of animals with trace elements, such as copper and zinc, presents problems in that farm animals have requirements that need to be satisfied, but high levels of trace elements in excreta can potentially be unsafe to the environment. For this reason, maximum contents have been set for trace elements in animal feeds. When used in terrestrial livestock, trace elements will be excreted by the animal in the faeces and will enter the soil environment when the faeces are applied, as a fertiliser to land, or in the form of manure, slurry or litter. During the farming of fish in sea cages, it is unavoidable that copper and zinc are deposited in the sediment underneath the cage.

EFSA commissioned a study on the environmental impact of copper and zinc used in animal nutrition (Monteiro et al., 2010). In this particular study, it was concluded that the use of zinc as a FA does not pose direct concern for the agricultural soil compartment, but that there is a potential environmental concern related to drainage and run-off of zinc to surface water. Most vulnerable to these processes are acid sandy soils. The use of zinc as a FA at currently authorised levels in marine aquaculture was predicted not to be an appreciable risk to the environment. Due to the concerns rose in the report (Monteiro et al., 2010), EFSA published an Opinion in which it proposed reducing maximum authorised levels of zinc in animal feeds (EFSA FEEDAP Panel, 2014). It was estimated that introducing newly proposed total maximum contents, provided they are applied in feeding practices, would result in an overall reduction in zinc emissions from animal production of about 20%.

In the study by Monteiro et al. (2010), copper was implicated to pose a potential risk to soil organisms specifically as a result of the application of piglet manure. Levels of copper in other types of manure were deemed too low to create a risk. There might also be a potential environmental concern related to contamination of sediment due to drainage and the run-off of copper to surface water. The use of copper-containing additives in aquaculture, up to the maximum authorised copper level in feeds, was not expected to pose an appreciable risk to the environment.

Zinc and copper are also used as veterinary drugs for piglets to prevent diarrhoea and are in this application administered orally at doses an order of magnitude higher than those of feed additives. This use is not assessed by EFSA but falls under the European Medicines Agency (EMA) responsibility.

Two classes of parasiticides (i.e. coccidiostats and histomonostats) which can be administered as feed additives are stable and may remain active long (for months) after being excreted by the animals that fed upon them. It has been highlighted that some veterinary drugs aimed at controlling endoparasites, in particular macrocyclic lactones, can potentially have detrimental effects on manure-decomposing communities such as dung beetles and flies (Beynon, 2012a,b; Beynon et al., 2012; Wall and Beynon, 2012). The loss of dung colonisers was shown to delay pat decomposition, a significant ecosystem service (Wall and Beynon, 2012). The Scientific Committee noted that the EFSA ERA of feed additives focusses on collected manure spread on land and does not directly address the potential impact on manure-decomposing communities in pats from livestock on pastures. Likewise, the standard OECD tests on earthworms, proposed by the FEEDAP Panel to assess the potential of effects to organisms living in soil, does not fully address impacts on communities living in the manure itself. Although experimental studies to date have not examined effects of feed additives (including coccidiostats and histomonostats) on colonisers of manure and the resulting impacts on dung decomposition, effects on these communities cannot presently be excluded.
B.4. **Invasive alien plant pest species (IAS) that are harmful to plant health**

B.4.1. **IAS in Europe**

The total number of IAS currently identified in Europe amounts to 12,122 species (DAISIE, 2014), part of which are pests\(^{38}\) of plants, either cultivated or wild.

B.4.2. **Trends of extent in Europe**

The combined effects of the increased human impacts on the environment imposed by the Industrial Revolution, and the globalisation of trade, have favoured the introduction of IAS to new territories (Hulme, 2009). As a result, in the last two centuries numerous non-native species have become successfully established over large parts of Europe (Hulme, 2007). Partly due to climate change, the rate of biological invasions keeps increasing in the EU and worldwide, representing one of the major, and growing, causes of biodiversity loss and species extinction (Caffrey et al., 2014), with an estimated cost for the EU of at least 12 billion per year and damage costs continuing to rise. These impacts vary greatly across IAS and the affected ecosystems. There is therefore an urgent need to develop standardised methods to assess the impacts of IAS taking into account traits of the IAS and the characteristics of the receiving environment (Dick et al., 2014). The EFSA PLH Panel proposed a framework to establish a standardised methodology to assess such impacts of IAS (EFSA PLH Panel, 2011).

B.4.3. **Exposure and effect assessments**

The concept of exposure is interpreted as the potential pest density (or prevalence) over time. The pest population density represents the most important state variable necessary to describe current and predicted trophic relationships between a pest and its host, and therefore between a pest and the ecosystem that it affects over time (EFSA PLH Panel, 2011, 2014).

Pest population density can be expressed in terms of number of individuals or amount of biomass per unit area or volume. In the case of phytophagous pests, the option to consider biomass can be even more informative than number of individuals when assessing the population pressure on the environment. In the case of plant pathogens, the population density can be considered equivalent to the prevalence of the disease/symptoms in a given plant population per unit of area or volume (EFSA PLH Panel, 2011). The EFSA Plant Health Panel assesses the effects of an alien species on an ecosystem as:

- **Effects on ecosystem attributes:** Here a very broad range of attributes can be considered, e.g. biomasses of functional groups in the ecosystem, chemical properties of surface water (e.g. phosphorus concentration, oxygen concentration, pH).
- **Effects on ecosystem services and biodiversity:** as the percentage of reduction (1) in the provision level of the ecosystem services, and (2) in each biodiversity component, in relation with the alien species density.

In the assessment of impacts of IAS on the environment, not only the effects of the species itself have to be assessed, but also those of control measures that are carried out to mitigate pest impacts. Mitigation efforts following the introduction of alien species affecting plants are likely to result in intensified control efforts, especially in agriculture, but also in natural habitats. Any control effort, but in particular increased use of pesticides, will cause further impacts (Chalak, 2009; Chalak et al., 2010). Alternative control methods, such as biocontrol by introduction of an alien natural enemy species, also carry risks, in particular the attack of native species (Messing and Wright, 2006).

\(^{38}\) Within this scientific opinion, ‘pest’ is used as a synonym for an invasive alien species, detrimental to plant health.