New Host Plants of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in Turkey

Y. Bayram¹  M. Büyük²  C. Özaslan²*  Ö. Bektas⁴  N. Bayram⁵
Ç. Mutlu⁴  E. Ateş⁴  B. Bükkün³

¹Republic of Turkey Ministry of Food, Agriculture and Livestock. General Directorate of Food and Control Department, Ankara
²Dicle University, Agriculture Vocational College, 21280 Diyarbakır
³Dicle University, Faculty of Agriculture, Department of Plant Protection, 21280 Diyarbakır
⁴Plant Protection Research Station, 21110, Diyarbakır
⁵Diyarbakır Provincial Directorate of Food, Agriculture and Livestock, Diyarbakır
cumaliz@yahoo.com

Surveys for determining alternative host plants of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in the Southeast Anatolia Region of Turkey were carried out in open fields of tomato growing areas between the years of 2011 and 2012. Plants of four different families including Solanaceae, Amaranthaceae, Asteraceae and Poaceae have been identified as host plants. From cultivated members of the Solanaceae family; *Solanum lycopersicum* L. (tomato), *Solanum melongena* L. (aubergine), and *Capsicum annuum* L. (pepper), uncultivated Solanaceae; *Solanum nigrum* L., (*black nightshade*), *S. woronowii* Pojark. and *Physalis angulata* L. (*cutleaf groundcherry*), from the other non-cultivated weeds around tomato fields *Amaranthus viridis* L. (*slender amaranth*), belonging to the Amaranthaceae, *Sorghum halepense* L. (Pers.) (*johnson grass*) belonging to Poaceae and *Xanthium strumarium* L. (*coclébur*) belonging to Asteraceae family were detected as host plants of *T. absoluta*. Among them, *S. woronowii*, *P. angulata*, *X. strumarium*, *A. viridis* and *S. halepense* are the first records as hosts of *T. absoluta* in Turkey.

Key words: Tomato leafminer, *Tuta absoluta*, new host plants, Southeast Anatolia Region, Turkey

Türkiye’de *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae)'nın Yeni Konukçu Bitkileri


Anahtar Kelimeler: Domates galeri sineği, *Tuta absoluta*, yeni konukçu bitkiler, Güneydoğu Anadolu Bölgesi, Türkiye

Introduction

The Tomato moth, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) was only found in South America in the early 1900s. European, Asian and African countries were infected during the 2000’s because of the import and export activities among countries and even continents (Cáceres, 1992; Desneux et al., 2010; Ostrauskas and Ivinskis, 2010; Bech, 2011; Abbes et al., 2012). However, it is predicted that in the near future, the pest is likely to emerge in China and India—countries which are first in tomato production in the world (Desneux et al., 2011).

In Turkey, *T. absoluta* was first found in 2009 (Kılıç, 2010), and has spread rapidly in all regions of the country because of its high reproductive
capacity. *Tuta absoluta* is one of the most important lepidopterous pests on tomato in both greenhouses and open fields. Although the primary host of this pest is tomato, it can also attack other cultivated Solanaceae plants such as aubergine (*Solanum melongena* L.), potato (*Solanum tuberosum* L.), pepper (*Capsicum annuum* L.), tobacco (*Nicotiana tabacum* L.), Cape gooseberry (*Physalis peruviana* L.) and goji berry (*Lycium* sp.) (*Vargas*, 1970; *Campos*, 1976; *EPPO*, 2009; *Tropea Garzia*, 2009; *Portakaldali et al.*, 2013), as well as non-cultivated Solanaceae (*Solanum nigrum* L., *Solanum eleagnifolium* L., *Solanum bonariense* L., *Solanum sisymbriifolium* Lamarch, *Solanum saponaceum* Welwitsch, *Lycopersicum puberulum* Lamarch, *Lycium* sp., *Malva* sp. (*Garcia* and *Espul*, 1982; *Larrain*, 1986; *Caponero*, 2009). Furthermore, it was reported in Fabaceae family on common bean (*Phaseolus vulgaris* L.) in Sicilia, Italy (*EPPO*, 2009). This shows that *T. absoluta* has a high tendency to use various plants as secondary hosts, especially species within the Solanaceae family. The alternative host plants allow *T. absoluta* to survive in many habitats in case of absence of tomato crops. This fact is important to improve control methods and for the eradication of the pest. It is expected that additional plant species as alternative hosts will be increased in the near future. The aim of this study was to find alternative host plants of *T. absoluta* in the Southeast Anatolia Region of Turkey in 2011 and 2012.

**Material and Methods**

Survey studies were carried out to determine alternative host plants of *T. absoluta* in the Southeast Anatolia Region (Şanlıurfa, Diyarbakır, and Mardin provinces) of Turkey (Table 1). Sampling of *T. absoluta* was performed monthly in open fields of tomato production areas (*Bora* and *Karaca*, 1970). Surveys were carried out in tomato fields, as well as some cultivated plants that can be host for the pest such as aubergine and pepper fields near to tomato fields and on weeds inside/outside of the tomato fields.

**Results**

Tomato (*S. lycopersicum*) is the most preferred host plant for *T. absoluta*. In addition to tomato, cultivated *Solanum* species including aubergine (*S. melongena*) and peppers (*C. annuum*), non-cultivated *Solanum* species as black nightshade (*S. nigrum*), *S. waronowii* and cutleaf groundcherry (*P. angulata*), non-cultivated weeds around tomato fields including slender amaranth (*A. viridis*), belonging to Amaranthaceae, Johnson grass (*S. halepense*) belonging to Poaceae, and coclebur (*X. strumarium*) belonging to Asteraceae family were detected as host plants of *T. absoluta*. This study is the first to document *Solanum waronowii*, *P. angulata*, *X. strumarium*, *A. viridis* and *S. halepense* as hosts of *T. absoluta* in Turkey (Table 2).

**Conclusion**

Preliminary surveys confirmed that *T. absoluta* was found in cultivated and non-cultivated plants and even away from tomato crops. This means that they are able to survive in various habitats, have a high potential for natural spread and infest other plants. The pest was recorded in many of alternative host plants such as on greenhouse pepper (*Capsicum annuum*), golden berry (*Physalis peruviana*), aubergine (*S. melongena*), bean (*Phaseolus vulgaris*), potato (*S. tuberosum*), and tobacco (*N. tabacum*). Among its alternative hosts are the weeds: *Solanum nigrum*, *Datura stramonium*, *Datura ferox* and *Nicotiana glauca*, *Lycium* sp., *Convolvulus arvensis* and *Malva* sp. (*Pastrana*, 1967; *Vargas*, 1970; *Campos*, 1976; *Estay*, 2000; *EPPO*, 2005; *EPPO*, 2009; *Caponero*, 2009; *Tropea Garzia*, 2009; *Desneux et al.*, 2010; *Portakaldali et al.*, 2013).

One of the important information in order to control pests is to know their hosts. Rotation and weed control strategies should be performed for preventing reproduction and spread of the pest. Weeds should be removed from the direct surroundings that might act as a host plant for *T. absoluta*. In the United States, a crop rotation with a host-free period is essential for reducing pest populations in tomato crops (*Zalom et al.*, 2008).
Table 1. Surveyed areas of the Southeast Anatolia Region in Turkey

<table>
<thead>
<tr>
<th>Provinces</th>
<th>Surveyed area in 2011 (ha)</th>
<th>Surveyed area in 2012 (ha)</th>
<th>Total surveyed area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diyarbakır</td>
<td>7</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Şanlıurfa</td>
<td>19</td>
<td>41</td>
<td>60</td>
</tr>
<tr>
<td>Mardin</td>
<td>4</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 2. The host plants of *Tuta absoluta* on surveyed area in Turkey

<table>
<thead>
<tr>
<th>Provinces</th>
<th>Scientific name</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diyarbakır</td>
<td><em>Solanum lycopersicum</em> L.</td>
<td>Solanaceae</td>
</tr>
<tr>
<td></td>
<td><em>Solanum melongena</em> L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Capsicum annuum</em> L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Solanum nigrum</em> L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Solanum woronowii</em> Pojark. *</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Physalis angulata</em> L.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Amaranthus viridis</em> *</td>
<td>Amaranthaceae</td>
</tr>
<tr>
<td></td>
<td><em>Xanthium strumarium</em> L.*</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td><em>Solanum lycopersicum</em> L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Solanum melongena</em> L.</td>
<td></td>
</tr>
<tr>
<td>Şanlıurfa</td>
<td><em>Capsicum annuum</em> L.</td>
<td>Solanaceae</td>
</tr>
<tr>
<td></td>
<td><em>Solanum nigrum</em> L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Sorghum halepense</em> L.*</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td><em>Solanum lycopersicum</em> L.</td>
<td></td>
</tr>
<tr>
<td>Mardin</td>
<td><em>Solanum melongena</em> L.</td>
<td>Solanaceae</td>
</tr>
<tr>
<td></td>
<td><em>Capsicum annuum</em> L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Solanum nigrum</em> L.</td>
<td></td>
</tr>
</tbody>
</table>

*New host plant record for Turkey

When a new pest is displayed in new areas, it invades native species that have not been identified as host plants previously. Alternative host plant species should be taken into consideration and surveys should be extended to local species within the host genera as well as the other host plant families. *T. absoluta* could reproduce and spread to so many areas because of the presence of alternative host plants. Certain lepidopteran species have considerable active dispersal capacity (Chen et al. 1989; Fitt 1989; Feng et al. 2005). Furthermore, the pest likely colonizes new areas actively through flying or passively by the wind. All these factors should be taken into consideration to improve control strategies against the pest. In this study except for cultivated and uncultivated Solanacea plants five host plants that belonging to different families were determined as new host plants in Turkey.

We predict the list of host plant of *T. absoluta* will increase with the future studies. In addition, these new host plants, are very common in Diyarbakır and Şanlıurfa (Özaslan et al., 2011; Özáslan and Bükün, 2013). Especially host plant list belonging to different families gives an idea that even its cultivated host plant harvested or getting worse still *T. absoluta* could survive, reproduce and spread because of so many alternative host plants species.

Acknowledgments

We are thankful for providing us to carry out this project for their assistance and supporting “General Directorate of Agricultural Research and Policies of Ministry of Food, Agriculture and Livestock” (GDAR Project No: 11 / 10-01 / 01-02/3).
References


EPPO, 2009. EPPO Reporting service-Pest and Diseases. No 8, Paris. 01.08.2009.


Estay, P. 2000. Polilla del tomate Tuta absoluta (Meyrick).Instituto de Investigaciones Agropecuarias, (INIA-La Platina), Santiago de Chile.


