Variation of wood density in Turkish hazel (Corylus colurna L.) grown in the Czech Republic

A. Zeidler

Department of Wood Processing, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic

ABSTRACT: The aim of this study was to investigate the wood density of Turkish hazel (Corylus colurna L.), an introduced species in the Czech Republic. Sample trees coming from a Czech site were tested for basic wood density and oven-dry density according to Czech National Standards. Four sections were taken from each tree to evaluate the variability of wood density along the stem height and along the stem radius. The mean values for the basic density and the oven-dry density were 544 kg m⁻³ and 627 kg m⁻³, respectively. The results show that the highest density can be found in the bottom part of the tree, followed by a decline with the increasing height of the stem. For the radial direction from the pith to the bark, the pattern of density variability was more complex, reaching its highest value close to the cambium. Practically no correlation between annual ring width and density values was found out.

Keywords: Corylus colurna L.; wood; density; variability

Introduced species, in spite of legislative barriers and persistent resistance of some professional groups, are still a focus of forestry research in the Czech Republic. Non-native species often exceed domestic species in their production potential and other properties. A significant benefit, which often follows the introduction, is their greater ability to resist adverse conditions and various agents in comparison with native tree species. With respect to high volume production, Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) and grand fir (Abies grandis [Dougl.] Lindl.) rank among the promising species, which exceed domestic tree species in this criterion (Beran 2006; Tauchman et al. 2010). The important soil-improving functions of these introduced tree species cannot be neglected (Podrážský et al. 2001; Podrážský, Remes 2009). The awareness of the wood quality of introduced tree species growing in this country is insufficient, even though they often feature better wood properties compared to our related native tree species (Zeidler 2005). Surprisingly, despite considerable popularity in park and garden plantings, Turkish hazel (Corylus colurna L.) has remained outside the interest of the Czech forestry sector. In the countries of its original distribution it ranks among the commonly used commercial woody species (Němec et al. 2005). It is also an important source of tasty and nourishing nuts (Duke 2001). Turkish hazel is a tree which reaches a height of up to 20 m and rarely occurs in the form of a shrub. It is native to Southeast Europe, the Caucasus, Asia Minor, Iran and the Himalayas (Hejny, Slavík 2003). Heartwood is present mostly in older trees. Sapwood is wide, reddish, and the colour of heartwood is reddish-brown. The wood is characterized by the presence of aggregated rays (Kavina 1932). The occurrence of pith flecks (Němec et al. 2005) is also frequent. Turkish hazel belongs to a group of diffuse porous hardwoods by wood structure and vessel arrangement (Kavina 1932; Greguss 1959). The wood is described in the literature as medium-weight and moderately hard. It is well machined (Wagenführ 2004). The durability of the wood is quite low (Němec et al. 2005). The wood is mainly used for furniture making and for the production of decorative veneers (Kavina 1932). It is also popular for boulle making (Wagenführ 2004).

Wood density represents the weight of wood mass related to its unit volume. This is an essen-
Table 1. Description of sample trees of Turkish hazel

<table>
<thead>
<tr>
<th>Sample tree</th>
<th>Diameter d_{13} (cm)</th>
<th>Tree high (m)</th>
<th>High of first living branch (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.5</td>
<td>15.5</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>29.0</td>
<td>17.3</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>27.5</td>
<td>18.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

This article is one of the first outputs of comprehensive research focused on the physical and mechanical properties of wood from Turkish hazel grown in the territory of the Czech Republic. The objective of this study was to investigate the basic wood density and the oven-dry density of Turkish hazel wood, as well as their vertical and horizontal variability within a stem. The impact of annual ring width on the wood density was also evaluated.

MATERIAL AND METHODS

Three representative trees of Turkish hazel were sampled to test wood density and other physical and mechanical properties of wood. The locality where the trees were sampled was situated in the north-western part of Prague district, Central Bohemia. The height of the locality is about 280 m a.s.l. The average annual precipitation is around 500 mm and average temperature about 9°C. Although the sample trees did not come from a forest stand but rather from a plantation, they were from an extensive group of trees with the closed canopy cover. For this reason the trees had straight stems, free of any branches to a relatively great height. Selection of the representative trees for evaluation of wood properties took into particular consideration, in addition to a straight stem, the absence of other...
growth irregularities and visible defects. Basic descriptions of the sample trees are given in Table 1.

The felled sample trees were cut into 4 sections, each 1 m long, in ascending order from the basal area up to the crown. Central boards were sawn from these sections and stored in a sheltered place to reduce moisture content. The remaining sections were further processed into boards used for the preparation of specimens for testing of selected mechanical properties.

Specimens 20 x 20 x 30 mm were made from the central board. The position of the testing sample from the aspect of the pith was in focus, in order to evaluate the variability of properties in the radial direction (Fig. 1). These specimens were used to determine density, shrinkage, hardness and compressive strength. All processes of the specimen preparation, selection and moisture content treatment as well as measurements were in accordance with the Czech National Standard CSN 49 0101.

In this study the basic density and the oven-dry density were the wood properties of Turkish hazel that were tested. Czech National Standard CSN 49 0108 was used for the density determination. To achieve a state of absolutely dry wood, the specimens were placed in a kiln and dried at 103°C. Determining the moisture content of wood was in accordance with the Standard CSN 49 0103. To reach a maximum volume the specimens were soaked in distilled water until the moisture content was above the fibre saturation point.

To assess the impact of annual ring width on wood density variability in the radial direction, a disk was cut from each sample tree at breast height. After sanding, the discs were scanned at a resolution of 1,200 dpi. The annual ring width was measured using NIS Elements software. The disks were also used to estimate the age of the trees.

All data were statistically processed in the STATISTICA 9 software. The statistical significance of differences among the trees, sections or sets of specimens according to a distance from the pith was evaluated using the ANOVA method. Regression analysis was employed to explain the density fluctuations depending on annual ring width and position within the stem. For all statistical analyses the same significance level, α = 0.05, was used.

RESULTS

The basic wood density and the oven-dry density of the tested Turkish hazel trees were 544 kg-m⁻³ and 627 kg-m⁻³, respectively. A more detailed statistical description of the density is given in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Basic density</th>
<th>Oven-dry density</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>Standard deviation (kg-m⁻³)</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>Coefficient of variation (%)</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Minimum (kg-m⁻³)</td>
<td>483</td>
<td>551</td>
</tr>
<tr>
<td>Maximum (kg-m⁻³)</td>
<td>619</td>
<td>714</td>
</tr>
</tbody>
</table>

It was possible to find differences among the particular sample trees. The basic density of the first sample tree differed significantly from the remaining trees. The difference of the first tree was also statistically confirmed for the oven-dry density.

Fig. 2. Variation in the basic density and oven-dry density at various heights of the stem in Turkish hazel
The basic density of Turkish hazel was highest at the very bottom part of the stem and decreased with the increasing height of the tree. The same pattern for increasing height was observed for the oven-dry density (Fig. 2). The two bottom sections differed from the upper sections statistically in the case of both densities.

In the radial direction, from the pith outwards to the bark, the basic density rose initially. That increase was followed by a moderate decrease at 4/5 of the radius to be replaced again by an increase, reaching the highest value in the whole cross-section. Statistical tests confirmed a significant difference only between the first and the last zone. Distribution of the oven-dry density in the horizontal direction showed a very similar pattern (Fig. 3). The next-to-last zone featured a drop in the growth trend, and the highest value of the oven-dry density was found at the zone close to the bark. Statistically only the last zone differed from the previous zone.

Nonlinear regression models were used to fit the acquired data and predict variability of basic density and oven-dry density depending on the position in the stem (Fig. 4). The models indicate a decrease in density towards the crown and in the direction from the bark to the pith for both the basic density and the oven-dry density.
Table 3. Equations and coefficients of determination for regression models

<table>
<thead>
<tr>
<th>Equation</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic density (z = 560.5 - 8.23x + 0.071 \exp(y))</td>
<td>0.14</td>
</tr>
<tr>
<td>Oven-dry density (z = 640.3 - 6.92x + 0.067 \exp(y))</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Although the presented models are statistically significant, the coefficients of determination are quite low. The equations and the coefficients of determination are presented in Table 3.

The number of annual rings at breast height varied from 34 (sample tree 1) to 38 (sample tree 2) and to 41 (sample tree 3). In any case, we cannot speak about the felling maturity of sample trees. Average annual ring width for the evaluated trees was 3.2 mm. The average annual ring width was very similar on the level of individual sample trees, while a statistical test did not confirm any significant differences. The width of the annual rings increases from the pith to the middle of the radius, and then this trend is followed by a decrease (Fig. 5). This pattern of annual ring width distribution is similar for all sample trees.

Table 4. Comparison of the oven-dry density of Turkish hazel and selected native commercial species

<table>
<thead>
<tr>
<th>Tree species</th>
<th>Oven-dry density (kg·m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkish hazel</td>
<td>627</td>
</tr>
<tr>
<td>European birch*</td>
<td>610</td>
</tr>
<tr>
<td>Norway maple*</td>
<td>620</td>
</tr>
<tr>
<td>Sessile oak*</td>
<td>650</td>
</tr>
<tr>
<td>European beech*</td>
<td>680</td>
</tr>
</tbody>
</table>

*Lexa et al. (1952)

The density value has a very low correlation with annual ring width in the Turkish hazel wood. The linear regression model explained only a negligible part of density fluctuation. The coefficients of determination obtained for the basic density and the oven-dry density were only 0.05 and 0.06, respectively.

DISCUSSION

Korkut et al. (2008) reported a value of 699 kg·m\(^{-3}\) for the oven-dry density of Turkish hazel. The tested trees came from Turkish sites and therefore represented the wood density of this species in native areas. The wood density reached in the Czech Republic is lower. It is necessary to stress that sample trees in the Turkish research were grown in mountain areas, on steep slopes, and that the site conditions were totally different compared to the experiment presented in this article. Moreover, it could be supposed that those mature trees contained a different proportion of juvenile wood compared to the quite young tested trees from the Czech area. Further testing material from different sites would be necessary to assess the influence of site and age on the density value.

A surprisingly low value of variability was obtained for the tested Turkish hazel wood. The coefficients of variation for the basic density and the

oven-dry density were 4.8% and 4.9%, respectively. A common value for the coefficient of variation for wood density is about 10% (Novák 1970; Simpson, TenWolde 1999). In the case of the tested trees, the coefficient value is reduced by half.

Wood density is widely used as quite a reliable indicator of other important wood properties. From that aspect, the evaluated Turkish hazel wood could resemble Czech native species such as European birch, Norway maple, and sessile oak. Not even does European beech substantially exceed the tested Turkish hazel wood in terms of wood density (Table 4).

In hardwoods the variability of wood density in the radial direction is closely connected with anatomical structure, especially with the proportion of vessels and fibres and their cell wall thickness. In the group of diffuse porous species, it is difficult to find any explicit trend in this direction compared to softwoods or ring porous hardwoods (Panshin, De Zeeuw 1980). The study of Kord et al. (2010) reported a pattern of increasing wood density from the pith to the bark for Populus euramericana. On the other hand, Gýrc et al. (2008b) found a downward trend in that direction for European beech. In the case of willow, no impact of the horizontal position in a stem on the wood density value was confirmed (Sennery-Forsse 1989). The complexity and ambiguity surrounding the issue of wood density variability in the radial direction in diffuse porous hardwoods was demonstrated by Kárrk (2001) for European aspen, and by Bhat and Karkkainen (1981) for birch. The wood density of those species grew, decreased or was constant in the radial direction depending on the vertical position in those species.

Similarly to the horizontal variability, it is difficult to generalize the course of vertical variability within a stem in diffuse porous hardwoods (Panshin, De Zeeuw 1980). Zobel and Van Buitenhen (1989) found out a decrease in wood density with increasing stem height for some species with the diffuse porous wood structure. A decrease in the wood density value with increasing tree height was also observed as an axial variation pattern in Populus euramericana (Kord et al. 2010). In European aspen the wood density also decreased at first, but the value started to rise from the middle part of the tree (Kárrk 2001). Nevertheless, the ambiguity of this issue was reported by other authors. Birch wood density rose up to the crown, followed by a drop in the upper part (Sennery-Forsse 1989), and no trend was found even for the vertical variability in eucalyptus (Rao et al. 2002).

Bouriaud et al. (2004) reported a negligible impact of annual ring width on the wood density value. Niemz (1993) stated that in general there did not exist a relationship between these two variables in diffuse porous hardwoods.

CONCLUSION

The results of this research confirmed that Turkish hazel should not be regarded as an inferior tree species from the perspective of wood quality. If we perceive wood density as one of the most important wood quality indicators, then Turkish hazel represents a suitable alternative to some of our native commercial species, especially maple, birch and to some extent even beech. Although the tested trees were not mature in terms of harvesting, the results do not differ significantly from indigenous areas. Despite the very low coefficient of determination, it is possible to find some trends in the model describing the within-stem variability of wood density. The highest value of wood density could be found in the basal part of the stem, and this value decreased in the direction towards the crown. In the horizontal direction the trend of wood density variation is more intricate. Nevertheless, even in the radial direction it is possible to trace an increase in the wood density value in the direction from the pith to the bark. The annual ring width cannot be used as a criterion for wood density estimation, as hardly and correlation between wood density and ring width was found. The tree species composition in Central Europe is relatively poor. Moreover, wood from those species is mostly light in colour with an often plain and therefore less attractive grain. From that aspect, Turkish hazel wood could lead to market enrichment, and the wood processing industry would benefit from its timber.

References

Received for publication September 23, 2011

Accepted after corrections January 2, 2012

Corresponding author:
Ing. Ales Zeidler, Ph.D., Czech University of Life Sciences Prague, Faculty of Forestry and Wood Science, Department of Wood Processing, 165 21 Prague 6-Suchdol, Czech Republic

e-mail: zeidler@fsl.czu.cz