Contribution to the Knowledge of Diversity of *Fusarium* Associated with Maize in Malaysia

Mohd Zainudin Nur Ain Izzati¹, **Abd Razak Azmi**², **Mohamed Sidique Siti Nordahliawate**³ and **Johari Norazlina**¹

¹Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; ²Malaysian Agricultural Research and Development Institute, Seberang Perai, Kepala Batas, Pulau Pinang, Malaysia; ³Department of Agrotechnology, Faculty of Agrotechnology and Food Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia

Abstract

The *Fusarium* species associated with maize are widely distributed in Malaysia. Eight *Fusarium* species were obtained in this country. A series of field samplings was conducted from 2006 to 2008, when 167 *Fusarium* isolates were obtained from maize plants in seven locations throughout Malaysia. The determination was based on micro- and macromorphological features (growth rates, colony features, mode of production of microconidia, macroconidia, conidiophores, and chlamydospores). *F. proliferatum* (29.9% isolates), *F. semitectum* (22.2% isolates), *F. verticillioides* (13.7% isolates), and *F. subglutinans* (12.6% isolates) were found out most frequently. *F. equiseti*, *F. pseudograminearum*, *F. oxysporum*, and *F. solani* were also isolated. This is the first report on the occurrence of *F. equiseti*, *F. pseudograminearum*, and *F. subglutinans* associated with maize plants in Malaysia.

Keywords: *Fusarium* species; distribution; morphology; *Zea mays* L.

Fusarium species are extensively distributed worldwide from temperate to tropical regions (Leslie & Summerell 2006). The species are also ubiquitous fungi that emerge as saprophytes, endophytes or pathogens of plants, animals as well as humans. Generally, they are pathogens of a wide range of plants in natural habitats, i.e. tomato, legumes, sorghum, maize, pine, pineapple, wheat, barley, oats, carnation, coffee, banana, rice, sugarcane, mango, asparagus, and grasses (Nelson et al. 1983; Burgess et al. 1994). Besides being pathogens of plants, *Fusarium* species may also produce secondary metabolites that involve mycotoxins (beauvericin, fumonisins and moniliformin) or phytotoxins (fusaric acid and gibberellic acid) (Booth 1971; Summerell et al. 2003). Maize (*Zea mays*) belongs to economically important plants that are well-known hosts of *Fusarium* species. Maize, which is an important and valuable crop, is a dicotyledonous angiosperm plant and a member of the grass family Poaceae (Park 2001).

Nowadays, the majority of research projects that were focused on the diversity of *Fusarium* species isolated from maize were frequently carried out in temperate areas (Leslie & Summerell 2006). However, in Malaysia and also in other coun-

Supported by the Malaysian Fundamental Research Grant Scheme (FRGS), Grant No. 01-11-08-661/FR/F1.
tries in the Southeast Asia region these studies are limited. Recently, Fusarium species such as F. chlamydosporum, F. fujikuroi, F. graminearum, F. proliferatum, F. pseudoanthophilum, F. oxysporum, F. nygamai, F. sacchari, F. semitectum, F. solani, F. thapsinum, and F. verticillioides were successfully isolated from maize showing typical symptoms of ear rot disease in Indonesia and four states of Malaysia, i.e. Perlis, Pulau Pinang, Sabah, and Sarawak (Darnetty et al. 2008). However, no report is available on the distribution and diversity of Fusarium species obtained from the west coast, east coast and southern areas of Peninsular Malaysia. Therefore, a study on the diversity of Fusarium species associated with maize plants in these regions was conducted due to the importance of the findings to supplement such information. The objectives of the present study were to investigate the distribution and morphological characteristics of Fusarium species associated with maize in Malaysia.

MATERIALS AND METHODS

Isolation of Fusarium isolates. A total of 265 samples of maize ears and 133 samples of maize bracts were obtained from seven maize-growing areas in the states of Johor (31 samples), Pahang (119 samples), Pulau Pinang (86 samples), Sabah (19 samples), and Selangor (143 samples) in Malaysia (Figure 1). All samples were surface sterilized with 0.5% of sodium hypochlorite for three minutes and rinsed twice in sterile water. The sterile samples were plated on a selective medium (PPA, Peptone Pentachloronitrobenzene Agar) as described by Nash and Snyder (1962) and incubated for 7 days under standard conditions (12 h under fluorescence and nUV lights, 12 h dark at a temperature of 28 °C ± 2°C) (Salleh & Sulaiman 1984).

Monospore isolation. From the fungal colonies grown on the selective medium, 5-mm sections of the mycelium were sub-cultured onto potato dextrose agar (PDA). The single-spore culture of the fungus was done on water agar (WA) by streaking technique.

Species identification and morphological characteristics. The cultures on PDA were used for the observation of macroscopic characteristics such as colony features, growth rate and pigmentation. For microscopic characteristics, pure cultures were transferred on carnation leaf agar (CLA), and the mycelium was inoculated close to sterile carnation leaf pieces. After 10 days of growth, the morphological characteristics were observed and evaluated according to Burgess et al. (1994) and Leslie and Summerell (2006) using a light microscope (Olympus model BX-50F4) and photographed using a JVC camera model KY-F55BE with an image analyser-SIS programme. The morphological characteristics of the fungi were also observed from slide cultures and in situ observation on CLA. Publications of Nelson et al. (1983), Burgess et al. (1994), and Leslie and Summerell (2006) were used for the identification of Fusarium isolates on a species level by morphological features.
RESULTS AND DISCUSSION

Out of the 398 samples cultured, 167 isolates of Fusarium species (49 isolates from bracts and 118 isolates from maize ears) were obtained, monospore cultured and identified into eight species. Ninety-three of the Fusarium isolates were classified into three species in the section Liseola, i.e. F. proliferatum (50 isolates), F. subglutinans (21 isolates) and F. verticillioides (23 isolates) (Table 1). F. proliferatum was the most frequently occurring in all study sites. F. equiseti, F. pseudograminearum, F. oxysporum, F. semitectum, and F. solani, which belong to different sections, were also isolated and identified. F. pseudograminearum (19 isolates) was obtained only from samples from Cameron Highlands, Pahang. The distribution of Fusarium species isolated from maize has been widely studied in Africa (Fandohan et al. 2003) and in European countries, maize samples showed especially the Fusarium ear rot disease (Longrieco et al. 2002). In Europe, comprehensive study on the pathogen of ear rot of maize, F. graminearum, was conducted including Austria (Krska et al. 1996), Poland (Lew et al. 1996) and the Czech Republic (Nedelnik 2000). In Malaysia F. proliferatum has been isolated from samples of maize the most frequently. Through experience working with morphological characteristics of Fusarium spp. in the section Liseola and other sections, considerable mistakes can be made by many, even experienced researchers, particularly in distinguishing F. proliferatum and F. verticillioides. However, both species can be distinguished by observing the conidiophore formation. Conidia of F. proliferatum arise from the monophialides and polyphialides conidiophores, while conidia of F. verticillioides are produced only from monophialides (Leslie & Summerell 2006). F. verticillioides was reported to be a pathogen on maize and can be found throughout the world wherever the plant is cultivated including Africa (Fandohan et al. 2003). With respect to morphological characteristics, F. verticillioides is also intermediate between F. nygamai and F. thapsinum and the macroconidia of F. verticillioides could be mistaken as these two species (Leslie & Summerell 2006). However, F. verticillioides and F. thapsinum do not produce chlamydospores (Nelson et al. 1983; Leslie & Summerell 2006). Thus, this character was used to distinguish between F. verticillioides and F. nygamai. However, differentiation between

<table>
<thead>
<tr>
<th>Fusarium species</th>
<th>Maize-growing areas (%)</th>
<th>Total isolates obtained from maize bracts</th>
<th>Total isolates obtained from maize ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. equiseti</td>
<td>–</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>F. pseudograminearum</td>
<td>–</td>
<td>11.4</td>
<td>10</td>
</tr>
<tr>
<td>F. oxysporum</td>
<td>–</td>
<td>5.9</td>
<td>8.4</td>
</tr>
<tr>
<td>F. proliferatum</td>
<td>1.8</td>
<td>–</td>
<td>29.9</td>
</tr>
<tr>
<td>F. semitectum</td>
<td>–</td>
<td>2.4</td>
<td>22.2</td>
</tr>
<tr>
<td>F. solani</td>
<td>–</td>
<td>–</td>
<td>12</td>
</tr>
<tr>
<td>F. subglutinans</td>
<td>6.6</td>
<td>0.6</td>
<td>12.6</td>
</tr>
<tr>
<td>F. verticillioides</td>
<td>–</td>
<td>0.6</td>
<td>13.7</td>
</tr>
<tr>
<td>Total number of isolates</td>
<td></td>
<td>14</td>
<td>167</td>
</tr>
<tr>
<td>Number of samples</td>
<td>34</td>
<td>85</td>
<td>398</td>
</tr>
</tbody>
</table>

TPU – University Agricultural Park; UPM – Universiti Putra Malaysia; MARDI – Malaysian Agricultural Research and Development Institute
F. verticillioides and F. thapsinum could be accomplished only by observing the pigmentation and on the basis of the mating population study (Leslie & Summerell 2006).

F. equiseti is a cosmopolitan soil inhabitant that has been recovered from many parts of the world from cool and temperate to hot and arid regions, primarily as a saprophyte or secondary invader (Leslie & Summerell 2006). This species has been isolated from pumpkin (Elmer 1996), cucurbit fruits (Adams et al. 1987) and date palms (Abbas et al. 1991). However, no report has shown that the species is pathogenic to maize plants. In the present study, F. equiseti was obtained only from Cameron Highlands, Pahang.

F. pseudograminearum was found in maize plant from the site Cameron Highlands, Pahang. This is possibly due to the related species F. graminearum, which was also reported to grow well in cool climate such as in that place (Darnetty et al. 2008). The Malaysian climate is typically hot and humid, with average day temperature of 33°C and average night temperature of 25°C. Compared to that of Cameron Highlands, the average day temperature is 23°C and average night temperature is 10°C, and is the optimal temperature for the good growth of F. pseudograminearum. The presence of F. pseudograminearum associated with maize is the first report in Malaysia.

A total of 14 isolates of F. oxysporum were obtained from Pahang, Selangor and Pulau Pinang. Previously, the species was reported as a saprophyte on maize in Malaysia and Indonesia (Darnetty et al. 2008), however it is also known as an important vascular wilt pathogen on various plants, namely cotton (Khalil et al. 2003), tomato (Larkin & Fravel 1998), potato (Kim et al. 1995), soybean (Helbig & Carroll 1984), asparagus (Al-Amodi 2006) and banana (Fernández-Falcón et al. 2003).

F. semitectum is a cosmopolitan species (Nelson et al. 1983). In the present study, the species is the second most frequently isolated Fusarium species from maize samples from Malaysia. The species is regularly found as secondary invader on diseased tissues (Summerell et al. 2003) and frequently isolated from aerial plant parts in subtropical and tropical regions (Leslie & Summerell 2006). It is frequently isolated from soils (Burgess et al. 1994) and from diverse aerial parts of several plants, namely asparagus (Al-Amodi 2006), kangaroo paw (Satou et al. 2001), potatoes (Kim et al. 1995) and some grasses (Nor Azliza et al. 2005). Besides that, F. semitectum has also been reported as an important plant pathogen causing pod and corky dry rot of melons (Carter 1979).

F. solani is also a cosmopolitan species on a wide range of substrates (Nelson et al. 1983). It is frequently recorded from soils (Leslie & Summerell 2006) and it is known as the pathogen of a large number of plant species, especially trees that showed canker and dieback symptoms (Nelson et al. 1983). Darnetty et al. (2008) reported that F. solani associated with Fusarium ear rot diseases of maize were obtained from Perlis, Malaysia and West Sumatra, Indonesia. In addition, the present study shows that the two isolates of F. solani were only obtained from Malaysian Agricultural Research and Development Institute, Pulau Pinang.

References

Park K.J. (2001): Corn Production in Asia: China, Indonesia, Thailand, Philippines, Taiwan, North Korea, South Korea, and Japan. ASPAC Food & Fertilizer Technology Center., Taipei.

Received for publication December 26, 2008
 Accepted after corrections December 28, 2010

Corresponding author:
Dr. Nur Ain Izzati Mohd Zainudin, Universiti Putra Malaysia, Faculty of Science, Biology Department, 43400 Serdang, Selangor Darul Ehsan, Malaysia
tel.: + 603 8946 6601, e-mail: izzati@science.upm.edu.my