Tropical agroforesters have been successful over the past 25 years in the selection, introduction, promotion and plantation of many exotic, fast-growing tree species for the benefit of rural people. However, some of these ‘miracle trees’ have proved to be very well adapted to local conditions, escaping from cultivation and spreading widely as aggressive weeds, threatening, rather than improving livelihoods. The status of exotic Prosopis species in sub-Saharan Africa epitomises this dilemma; it is the main plantation species in Cape Verde, the subject of national eradication and control programmes in South Africa, and all possible combinations in between, throughout the Sahel, East and southern Africa. Even after decades of work with probably the most common and widespread, multi-purpose trees in Africa, it appears that the agroforestry research and development community still cannot decide what to advise. Perceptions of Prosopis species vary widely, ranging from the most useful and productive tree tolerant of sites where little else will grow, to a weedy invader worthy only of wholesale eradication. What is a weed to one farmer may be a source of livelihood to another, but the extent of this dichotomy of opinion regarding Prosopis sends a very confused message to extension workers, foresters and farmers, who don’t know whether to plant it, prune it or pull it up.

Prosopis trees provided many valuable resources to indigenous populations in the native range, and are still a source of food, feed, fuel, timber and other raw materials today; often the cornerstone of local economies in arid regions where they constitute the main forest resource. The pods are rich in sugars and proteins and are widely used as animal feed and manufactured into various food and drink products. The wood is an excellent fuel, and as a timber has high structural stability and fine colour and grain. Flowering is profuse and produces a high quality honey, exudate gum is very similar to commercial gum arabic, and tannins, fibres and medicines are some other tree products. In the native range, deforestation and selective harvesting are threatening the diversity of some species and varieties, and there are urgent calls for genetic conservation programmes, notably in Peru, where little work has been conducted to date.

Many Prosopis tree species have been introduced into Africa from their native Americas over the past 200 years. Several have become naturalized and are now found in all arid and semi-arid regions, the most common species being Prosopis juliflora / Prosopis pallida in frost-free zones and Prosopis glandulosa / Prosopis...
velutina in sub-tropical areas. However, the few records of introduction, confusing taxonomy and hybrization have led to mis-identification which continues to the present day in some areas and hampers future development. All are generally thorny, though thornless types are known to exist. Where introduced, however, the indigenous knowledge on utilization has rarely followed and, combined with inadequate management, Prosopis trees have become unwelcome guests. Initially planted for fuel and fodder, livestock spread seed widely and, as nitrogen-fixing plants, they have a competitive advantage in degraded or overgrazed lands. Cut or browsed trees tend to a shrubby habit, and pastures can become covered in impenetrable bushy thickets in a matter of years. Prosopis species have been identified as becoming weedy in almost every African country where naturalized, and eradication programmes have been proposed and/or instigated in several, notably Sudan and South Africa. Manual, mechanical and chemical methods have been attempted, with limited success, while more recently in South Africa, efforts have concentrated on biological control which have shown promise. However, in other countries, Prosopis continues to be planted for fuel and fodder and for erosion control, notably in Cape Verde and Mauritania, where farmers consciously manage the trees and weediness is minimal.

The first detailed study on the impacts (both positive and negative) of invasive Prosopis in Africa was carried out by Simon Choge and colleagues at the Kenya Forestry Research Institute (KEFRI), Nairobi, Kenya in 2002. This gave monetary values to the smallest of impacts, including costs of repairing bicycle tyres and fishing nets damaged by thorns and income from sale of firewood, and also noted peripheral effects, including the 7% of respondents who stated that Prosopis thickets were a "refuge for thieves"! The conclusion was that, at present, the positive benefits outweigh the negative costs, but this balance was shifting in favour of the negative as invasion continues and ecologically sensitive areas are increasingly threatened. A change in policy is recommended to improve management and utilization of this potentially very valuable resource. Interest in Prosopis in Kenya heightened in March 2004, with the publication of several articles in national and regional newspapers. These reported that Kenya’s National Environmental Management Authority had summoned the Food and Agricultural Organization (FAO) to answer charges of introducing a noxious weed, following an accusation by the Community Museums of Kenya. This further highlights the chasm between the 'for' (promote) and 'against' (eradicate) camps for Prosopis in Kenya, which is also prevalent in other African countries and equally relevant for other 'invasive' tree species.