Introduction

Cotton known as “white gold” an important economical cash crop in Pakistan. Besides being exported, a considerable part of the cotton is used by the local textile mills in the creation of garments and fabrics. Bale et al. (2008) reported that bio-control agents are important and long-time result for pest problems. (Sathe and Bhosle, 2001) reported that parasitoids are important biocontrol agents. (Ahmad, 2009) they reported some predators and parasitoids are suppress the population of cotton pest such as seven spotted beetle, Geocoris spp., zig zag lady beetle, and egg parasitoids Trichogramma spp and Apanteles spp. Wells et al. (2005) observed larval parasitoid Apanteles on bollworms of cotton. Sekhon and Verma (1983) biological control agents are known alternate to chemical and used successfully for the control of pests.

Studies on the natural enemies of the cotton bollworms have reported a great diversity of associated parasitoids. Approximately 150 species of bollworm parasitoids from 13 families have been recorded occurring in the America (Molina-Ochoa et al., 2003). Twenty-two species have been reported for Mexico, and species composition seems to vary throughout the country (Lina-Ochoa et al., 2004). There are thousands of species of Ichneumonidae; they are among the main parasitoids of Lepidoptera, although the specific hosts are unknown for most Neotropical species. Biological data are provided by Townes (2000), Gauld et al. (2002), Hanson and Gauld (2006) and Yu et al. (2005). A great deal of research is devoted to the study of natural enemies of lepidopterans of economic interest. However, studies relating parasitoids to their hosts and the plants on which they feed in the wild are rare. Biological data for Ichneumonidae reared from lepidoptera larvae are
provided by Braga et al. (2001) and Marconato et al. (2008), for Geometridae larvae feeding on Piper spp. (Piperaceae) and for Geometridae on Erythroxylum microphyllum (Erythroxylaceae). The Ichneumonidae are a part of biodiversity inventory of Lepidoptera caterpillars and their parasitoids found feeding on Croton floribundus Spreng (Euphorbiaceae). C. floribundus is a pioneer species widely used to allow caterpillar collections. There is a wide range of Lepidoptera species and Hymenoptera parasitoids (Marconato et al., 2008).

The aim of this experiment is to determine the braconid parasitoids of pink bollworm in lower Sindh region.

Materials and Methods

The experiment on documentation of braconid parasitoids of pink bollworm on cotton crop at lower Sindh was conducted during the cotton season from May to December 2016. Each month total 300 effected bolls were collected from the different location of cotton growing area as Umerkot, Mir Pur Khas and Sanghar. These bolls were brought at IPM laboratory, Department of Entomology, Sindh Agriculture University Tandojam and kept in plastic jars with three replications at maintained temperature and specimens measured within 24 hours to record parasitoid emergence. In collected bolls was determined as numbers of larvae and also observed parasitoid from dead larvae. After the emergence of parasitoids we considered only braconids parasitoids. These parasitoids were preserved in 70% alcohol for proper identification. The parasitoid specimens were sent for identification to the CABI Bioscience, Central and West Asia, Rawalpindi, Pakistan.

Results and Discussion

The results shown in Figure 1 the parasitoid population in different districts of Sindh Province. The data revealed that maximum overall mean population 175.85±0.16 was recorded from collected bolls from Sanghar followed by 158.28±0.70 Mirpurkhas and 139.42±0.45 from Umerkot. The lowest parasitoid population was recorded during the month of May and highest population was found in the month October and November.

The results given in Figure 2 showed the population of Braconid sp. from the collected larvae of pink bollworm at district Umerkot. Maximum population was found Bracon gelechiae and minimum population was found Apanteles anagleti. Peak population of both parasitoids were recorded during the month of November and lowest population was found during the month of May.

The results in Figure 3 showed the population of Braconid sp. at district Mirpurkhas. A maximum number was Bracon gelechiae and the minimum was Apanteles anagleti. The population of both parasitoids species was increased during the month of November. Similar results were observed from the collected larvae of pink bollworm as maximum number of Bracon gelechiae and minimum number of Apanteles anagleti was recorded at district Sanghar in Figure 4.

Present results agree with (Shah et al., 2011) who conducted surveys in different regions of Sindh province and reported that the attack of pink bollworm was occurred in the month of November. Various researchers have reported that peak population of Pectinophora gossypiella found during the month of October and November (Chaudhary et al., 1999; Guirguis et al., 1999). Muzaffar (1996) reported Apanteles anagleti and Bracon gelechiae are major larval parasitoids of pink bollworm Pectinophora gossypiella in Pakistan. Similar studies Men et al. (2003) worked on diversi-
ty of parasitoids species and observed braconid para-
sitoids in cotton crop. Hafeez et al. (2006) reported
peak population of *Apanteles* spp. during the month
of October and November in cotton crop. Pilcher et
al. (2005) and Dhillon and Sharma (2013) observed
maximum population of Braconid spp.as compared to
other natural enemies during cotton season.

Figure 3: Population of Braconids sp. collected from Mirpurkhas.

Figure 4: Population of Braconids sp. collected from Sanghar.

Acknowledgements

I acknowledge all my research work to the Department
of Entomology, Sindh Agriculture University,
Tandojam for all kind of support during my research.

Author’s Contribution

I.A. Rajput: The idea data collection and overall
management of the article.
A.K. Pathan: Reviewed manuscript.
A.M. Ahmed: Supervised the research, interpreted
results and finalized the article.
M. W. Kaleoo: Data analysis.
A. Q. Baloch: Plagiarism.

References

from Pink bollworm. Available at: http://www.
Pakistan.com/english/advisory/saving.cotton.
from.the.pink .bllworm.shtml

Effects of intercropping on population of pests
and natural enemies in Bt. and non-Bt. cotton
under sprayed and unsprayed conditions. Ind. J.
Ecol. 35: 59-63.

Braga, S.M.P., M.M. Dias and A.M. Penteado-
dias. 2001. Aspectos bionômicos de Eois
tegularia (Gueneé) e Eois glauculata (Walker)
(Lepidoptera, Geometridae, Larentiinae) e
seus parasitóides. Rev. Brasil. de Zool. 18:
837–840. https://doi.org/10.1590/S0101-
81752001000300019

Chaudhari, G.B., T.M. Bharoda, J.J. Patel, K.
Patel and J.R Patel. 1999. Effect of weather on
activity of cotton bollworms in middle Gujrat.

Dhillon, M.K. and H.C. Sharma. 2013. Comparative
studies on the effects of Bt-transgenic and
nontransgenic cotton on arthropod diversity,
seed-cotton yield and bollworms control. J.

Gauld, I.D., C. Godoy, R. Sithole and J.U. Gómez,

Guirguis, D.D., J.W. Van Duyn, M.B. Layton
and R.D. Bagwell. 1999. Management of the
tobacco budworm-bollworm complex. United
States department of agriculture. Agric. Res.
Serv. ARS–154.

Hafeez, F., M.J. Arif, M.D. Gogi, K. ZIA and
M. Arshad. 2006. Survey of Entomophagous
insects in cotton belt of Punjab, Pakistan. Pak. J.
pjbs.2006.1375.1380

Hanson, P.E and I.D. Gauld. 2006. Hymenoptera
Inst. 77: 1–994.

Lina-ochoa, J., J.E. Carpenter, R. Lezamaguitierrez,
J.E. Foster, M. Gonzalezramirez, C.A. Angel-
sahagun and J. Farias-larios. 2004. Natural
distribution of hymenopteran parasitoids of
*Spodoptera frugiperda* (Lepidoptera: Noctuidae)
larvae in Mexico. Flor. Entomol. 87(4):
461-472. https://doi.org/10.1653/0015-
Documentation of braconid parasitoids of pink bollworm on cotton crop


