Cookies on Environmental Impact

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Environmental Impact

From climate change to biodiversity loss - documenting human impacts on the environment

>>> Sign up to receive our Environmental Sciences newsletter, book alerts and offers <<<

CABI Book Chapter

Biosecurity surveillance: quantitative approaches.

Book cover for Biosecurity surveillance: quantitative approaches.

Description

Biosecurity surveillance plays a vital role in protection against the introduction and spread of unwanted plants and animals. It involves not just collecting relevant information, but also analysing this information. This book focuses on methods for quantitative analysis of biosecurity surveillance data, where these data might arise from observations, sensors, remote imaging, expert opinion and so...

Chapter 13 (Page no: 238)

Detection survey design for decision making during biosecurity incursions.

Biosecurity surveillance involves special challenges, in particular dealing with the fact that the target organism is usually absent from the surveyed area. In this context, surveys must be designed to detect small target populations and to estimate the likelihood that failing to detect the population means it is really not there. We summarize the basic formulae used to design simple detection surveys and show how they can be combined to create multilevel sample plans that are quick and easy to formulate, parameterize and optimize during a biosecurity incursion response. In particular, incursion investigators often need to assess the spatial extent of populations to evaluate whether eradication is a viable management option, but strict delimitation of the occupied area requires substantial sampling effort. Instead, we advocate a pragmatic approach whereby detection surveys are designed to address a particular data need, such as whether the population is present too widely to be eradicated. In this way key decisions, such as whether or not to attempt eradication, may be informed in the most rapid and cost-efficient way. This approach was used during the investigation of an incursion of an Australian pasture tunnel moth (Philobota sp.) into New Zealand.

Other chapters from this book

Chapter: 1 (Page no: 1) Introduction to Biosecurity surveillance: quantitative approaches. Author(s): Jarrad, F.
Chapter: 2 (Page no: 9) Biosecurity surveillance in agriculture and environment: a review. Author(s): Quinlan, M. Stanaway, M. Mengersen, K.
Chapter: 3 (Page no: 43) Getting the story straight: laying the foundations for statistical evaluation of the performance of surveillance. Author(s): Low-Choy, S.
Chapter: 4 (Page no: 75) Hierarchical models for evaluating surveillance strategies: diversity within a common modular structure. Author(s): Low-Choy, S.
Chapter: 5 (Page no: 109) The relationship between biosecurity surveillance and risk analysis. Author(s): MacLeod, A.
Chapter: 6 (Page no: 123) Designing surveillance for emergency response. Author(s): Havre, Z. van Whittle, P.
Chapter: 7 (Page no: 137) The role of surveillance in evaluating and comparing international quarantine systems. Author(s): Mittinty, M. Whittle, P. Burgman, M. Mengersen, K.
Chapter: 8 (Page no: 151) Estimating detection rates and probabilities. Author(s): Hauser, C. E. Garrard, G. E. Moore, J. L.
Chapter: 9 (Page no: 167) Ad hoc solutions to estimating pathway non-compliance rates using imperfect and incomplete information. Author(s): Robinson, A. P. Chisholm, M. Mudford, R. Maillardet, R.
Chapter: 10 (Page no: 181) Surveillance for soilborne microbial biocontrol agents and plant pathogens. Author(s): Whittle, P. Sundh, I. Neate, S.
Chapter: 11 (Page no: 203) Design of a surveillance system for non-indigenous species on Barrow Island: plants case study. Author(s): Murray, J. Whittle, P. Jarrad, F. Barrett, S. Stoklosa, R. Mengersen, K.
Chapter: 12 (Page no: 217) Towards reliable mapping of biosecurity risk: incorporating uncertainty and decision makers' risk aversion. Author(s): Yemshanov, D. Koch, F. H. Ducey, M. Haack, R. A.
Chapter: 14 (Page no: 253) Inference and prediction with individual-based stochastic models of epidemics. Author(s): Gibson, G. Gilligan, C. A.
Chapter: 15 (Page no: 265) Evidence of absence for invasive species: roles for hierarchical Bayesian approaches in regulation. Author(s): Stanaway, M.
Chapter: 16 (Page no: 278) Using Bayesian networks to model surveillance in complex plant and animal health systems. Author(s): Johnson, S. Mengersen, K. Ormsby, M. Whittle, P.
Chapter: 17 (Page no: 296) Statistical emulators of simulation models to inform surveillance and response to new biological invasions. Author(s): Renton, M. Savage, D.
Chapter: 18 (Page no: 313) Animal, vegetable, or ...? A case study in using animal-health monitoring design tools to solve a plant-health surveillance problem. Author(s): Hester, S. Sergeant, E. Robinson, A. P. Schult, G.
Chapter: 19 (Page no: 334) Agent-based Bayesian spread model applied to red imported fire ants in Brisbane. Author(s): Keith, J. M. Spring, D.

Chapter details

  • Author Affiliation
  • AgResearch Ltd, Hamilton, New Zealand.
  • Year of Publication
  • 2015
  • ISBN
  • 9781780643595
  • Record Number
  • 20153099601