Cookies on Environmental Impact

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Environmental Impact

From climate change to biodiversity loss - documenting human impacts on the environment

>>> Sign up to receive our Environmental Sciences newsletter, book alerts and offers <<<

CABI Book Chapter

Biosecurity surveillance: quantitative approaches.

Book cover for Biosecurity surveillance: quantitative approaches.

Description

Biosecurity surveillance plays a vital role in protection against the introduction and spread of unwanted plants and animals. It involves not just collecting relevant information, but also analysing this information. This book focuses on methods for quantitative analysis of biosecurity surveillance data, where these data might arise from observations, sensors, remote imaging, expert opinion and so...

Chapter 1 (Page no: 1)

Introduction to Biosecurity surveillance: quantitative approaches.

This book contains practical and innovative approaches to plant and animal biosecurity surveillance from Australia and around the world, using established and new methodologies, with a particular focus on the quantitative, particularly statistical, aspects of these methods. The book is structured in three parts. Part I supports the later parts of the book, by providing a foundation for describing the statistical modelling methods presented, as well as placing later chapters in the broader international context. The chapters in Parts II and III describe methods and supporting case studies that demonstrate and/or implement the techniques, tools and methods described. Each chapter focuses on particular aspects or concepts of surveillance and typically illustrates these using a case study. While the specifics differ among chapters, the following broad themes are commonly addressed in each chapter: (i) what is the big picture problem?; (ii) what are the main challenges for an evidence-based approach?; (iii) what are the main quantitative modelling solutions?; (iv) what are the main outcomes?; and (v) who is using this/how/why? In summary, this book can be used as a general reference to biosecurity surveillance, as well as a specific reference to frontier methodology used in biosecurity surveillance research and practice. It is hoped that the collation of current statistical modelling methodology that deals with common but complex biosecurity surveillance situations will not only provide informative reading, but will stimulate the identification of existing gaps in this methodology, and corresponding innovative statistical approaches to fill these gaps.

Other chapters from this book

Chapter: 2 (Page no: 9) Biosecurity surveillance in agriculture and environment: a review. Author(s): Quinlan, M. Stanaway, M. Mengersen, K.
Chapter: 3 (Page no: 43) Getting the story straight: laying the foundations for statistical evaluation of the performance of surveillance. Author(s): Low-Choy, S.
Chapter: 4 (Page no: 75) Hierarchical models for evaluating surveillance strategies: diversity within a common modular structure. Author(s): Low-Choy, S.
Chapter: 5 (Page no: 109) The relationship between biosecurity surveillance and risk analysis. Author(s): MacLeod, A.
Chapter: 6 (Page no: 123) Designing surveillance for emergency response. Author(s): Havre, Z. van Whittle, P.
Chapter: 7 (Page no: 137) The role of surveillance in evaluating and comparing international quarantine systems. Author(s): Mittinty, M. Whittle, P. Burgman, M. Mengersen, K.
Chapter: 8 (Page no: 151) Estimating detection rates and probabilities. Author(s): Hauser, C. E. Garrard, G. E. Moore, J. L.
Chapter: 9 (Page no: 167) Ad hoc solutions to estimating pathway non-compliance rates using imperfect and incomplete information. Author(s): Robinson, A. P. Chisholm, M. Mudford, R. Maillardet, R.
Chapter: 10 (Page no: 181) Surveillance for soilborne microbial biocontrol agents and plant pathogens. Author(s): Whittle, P. Sundh, I. Neate, S.
Chapter: 11 (Page no: 203) Design of a surveillance system for non-indigenous species on Barrow Island: plants case study. Author(s): Murray, J. Whittle, P. Jarrad, F. Barrett, S. Stoklosa, R. Mengersen, K.
Chapter: 12 (Page no: 217) Towards reliable mapping of biosecurity risk: incorporating uncertainty and decision makers' risk aversion. Author(s): Yemshanov, D. Koch, F. H. Ducey, M. Haack, R. A.
Chapter: 13 (Page no: 238) Detection survey design for decision making during biosecurity incursions. Author(s): Kean, J. M. Burnip, G. M. Pathan, A.
Chapter: 14 (Page no: 253) Inference and prediction with individual-based stochastic models of epidemics. Author(s): Gibson, G. Gilligan, C. A.
Chapter: 15 (Page no: 265) Evidence of absence for invasive species: roles for hierarchical Bayesian approaches in regulation. Author(s): Stanaway, M.
Chapter: 16 (Page no: 278) Using Bayesian networks to model surveillance in complex plant and animal health systems. Author(s): Johnson, S. Mengersen, K. Ormsby, M. Whittle, P.
Chapter: 17 (Page no: 296) Statistical emulators of simulation models to inform surveillance and response to new biological invasions. Author(s): Renton, M. Savage, D.
Chapter: 18 (Page no: 313) Animal, vegetable, or ...? A case study in using animal-health monitoring design tools to solve a plant-health surveillance problem. Author(s): Hester, S. Sergeant, E. Robinson, A. P. Schult, G.
Chapter: 19 (Page no: 334) Agent-based Bayesian spread model applied to red imported fire ants in Brisbane. Author(s): Keith, J. M. Spring, D.

Chapter details