Short Paper

First report of the exotic weevil *Stenopelmus rufinasus* (Coleoptera: Curculionidae) occurrence in Iran

Atousa Farahpour-Haghami1*, Ivo Tosiveski2&3, Bijan Yaghoubi1, Mahdi Jalaeian1 and Farzin Pouramir1

1. Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
2. Institute for Plant Protection and Environment, Department of Plant Pests, Banatska 33, 11080 Zemun, Serbia.
3. Centre for Agriculture and Bioscience International (CABI), 1 Rue des Grillons, 2800 Delémont, Switzerland.

Abstract: The water fern weevil, *Stenopelmus rufinasus* Gyllenhal (Coleoptera: Curculionidae), is considered as the most important biological control agent of *Azolla* spp. in the world. *Azolla* spp. was introduced in Iran in 1986. In August 2017, two specimens of *S. rufinasus* were collected on *Azolla* spp. in waterways near Anzali lagoon and Rice Research Institute of Iran (RRII) in Guilan province for the first time. Identification was based on molecular sequencing. This is the first record of *S. rufinasus* from Iran.

Keywords: Biological control, *Azolla* spp., weevil, Guilan province

Introduction

The semi-aquatic weevil, *Stenopelmus rufinasus* Gyllenhal, 1836 (Coleoptera: Curculionidae), is native to the southern and western United States (Le Conte, 1876). It was accidentally transported to Europe through the plant materials from Argentina and Paraguay at the beginning of twentieth century. The weevil was introduced into South Africa in 1997 for biological control of water fern, *Azolla filiculoides* Lamarck (Azollaceae) and controlled this invasive aquatic weed successfully (Winston et al., 2014; Parys et al., 2015). This weevil is known as one of the most successful biological control agents ever employed worldwide; however, there was no record of this weevil’s occurrence on *Azolla* spp. in Asia until 2014 (Winston et al., 2014). The first occurrence of *S. rufinasus* in Asia was reported in October 2017 (Friedman, 2017).

According to Centre for Agriculture and Bioscience International (CABI, 2018) databases, different species of *Azolla* spp. exists in Asia and some of them such as *Azolla pinnata* R. Brown have been reported as native species in India, China, Japan and many other areas. The water ferns were introduced to Iran in 1986 as green fertilizer for rice fields (Khoshravesh et al., 2009). Due to poor management, *Azolla* spp. invaded important aquatic natural habitats, such as the Anzali and Amir-Kalayeh lagoons in northern regions of Iran, and have become problematic in some of the rice fields as well (Farahpour-Haghami et al., 2016a). *Stenopelmus rufinasus* is known as a great biological control agent for water fern, *A. filiculoides*, worldwide. In addition, it has been demonstrated that this weevil can feed on mosquito fern, *A. pinnata*, and Carolina mosquito-fern, *Azolla cristata* Kaulf (previously known as *Azolla caroliniana*) as well (Winston et al., 2014; Parys et al., 2015). *Stenopelmus rufinasus* has not been reported from Iran and so far, *Rhopalosiphum nymphaeae* (Linnaeus) (Homoptera.: Aphididae), *Diasemiopsis ramburialis*
Duponchel (Lepidoptera: Crambidae), Nomophila noctuella Denis & Schiffermuller (Lepidoptera: Crambidae) and Cataclysta lemnata (Linnaeus) (Lepidoptera: Crambidae) have been recorded as the most important insects that feed on Azolla spp. in northern regions of Iran (Farahpour-Haghani et al., 2015; 2016a; 2016b; 2017). This is the first record of S. rufinasus from Iran.

Materials and Methods

Stenopelmus rufinasus was collected from water fern, Azolla spp., in the Anzali lagoon and RRII water ways, in 2017. Males and females were released on fresh water fern in laboratory and eggs were collected after 3 days. A replicated rearing test (10 ×), was carried out with 1, 3 and 5 pairs (one male and female) in laboratory in order to confirm its feeding on Azolla spp. Transparent plastic cups (8.5 by 11 cm, diameter by height) filled with 200 ml of water and 10 g of water fern and covered with net were used as rearing chambers. All life stages were photographed separately during the development time. Adults were examined by identification keys in RRII and after primary identification were sent to CABI for molecular identification by the second author of this paper.

Results

The weevil was collected for the first time in August 2017 from Anzali lagoon. Results of molecular identification indicated that the sequence of weevils collected from Iran were 100% identical with S. rufinasus sequence, KM440642 (NCBI database), originated from Germany (Neuburg an der Donau) that was published by Hendrich et al. (2015). Throughout the sampling site in Anzali lagoon, water ferns were damaged severely. Adults, pupae and last instar larvae were collected from water fern samples in laboratory in high density populations. Female laid eggs after 3 days in laboratory and after about 12 days water fern were almost wiped out, in some of the replicates. Last instar larvae are reddish brown with black head capsule. Pupa are off brown and puation usually occurs in pupal shelters made from feeding materials. Adults are dark brown to black, small in size and have shorter proboscis compared with other weevils.

Discussion

Stenopelmus Schönheir is a genus from Stenopelmi group. This group is monophyletic and placed within the tribe Erirhinini (Curculionidae) which is composed of mostly aquatic and semi aquatic weevils (LeConte, 1876). The presence of S. rufinasus is closely related to the occurrence of the Azolla spp. worldwide. In Guilan province, sampling sites were under regular monitoring for almost two years but damages caused by these weevils on Azolla spp. appeared in August 2017, and subsequently adults were collected upon careful examinations. Another population of weevil was found in a waterway in RRII at the same time. Therefore, apparently these weevils were imported to Iran recently. There is no information how the species was introduced to Iran. However, this would be an important beneficial factor for water fern biological control in Iran.

Acknowledgements

We would like to thank Dr. Faramarz Alinia, the head of, Rice Research Institute of Iran for providing financial support, the colleagues of plant protection department and Department of Plant Pests, Institute for Plant Protection and Environment of Serbia and Centre for Agriculture and Bioscience International for their cooperation and support.

Reference


اوّلین گزارش فعالیت سرخرطومی Stenopelmus rufinasus Gyllenhal, (Coleoptera: Curculionidae) در ایران

آتوس فرحپور جوانی، ایوب توپویسکی، ایودا توسی، مهدی جلایی و فرزین پورامیر

چکیده: سرخرطومی آزو، به عنوان مهیج‌ترین عامل کنترل بیولوژیک آژوال در دنیا شناخته می‌شود. آژوال در سال 1986 به ایران وارد شد. در مرداد ماه 1396 به همراه اولین بار از گیلان به کشور راه‌اندازی شد. اولین گزارش از S. rufinasus در ایران در سال 1996 بود. این گزارش به روش توالی‌بندی مولکولی انجام شد. این گزارش از S. rufinasus در ایران محصولی می‌شود.

واژگان کلیدی: کنترل بیولوژیک، آژوال، سرخرطومی، استان گیلان

First report of S. rufinasus from Iran

Stenopelmus rufinasus Gyllenhal, (Coleoptera: Curculionidae)