Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Nutrient digestion and utilization in farm animals: modelling approaches.

Book cover for Nutrient digestion and utilization in farm animals: modelling approaches.

Description

This book contains 34 chapters on nutrition physiology and presents scientific research in modelling nutrient digestion and utilization in domestic animals, including cattle, sheep, pigs, poultry and fishes. It is divided into 6 parts that cover fermentation, absorption and passage; growth and development; mineral metabolism; methodology and model development; environmental impacts and animal prod...

Metrics

Chapter 33 (Page no: 407)

The Nordic dairy cow model, Karoline - evaluation.

This study presents evaluation results of the model Karoline, which is described in another study (see Danfær et al., Chapter 32, this volume). The validations comprise behavioural analyses, testing against experimental data and comparison of Karoline with the Cornell Net Carbohydrate and Protein System (CNCPS) model. The model behaviour is evaluated from simulated responses to stage of lactation, feed intake, dietary protein level, dietary fat level and ratio of concentrate to forage in the diet. The response parameters are milk yield (MY), milk composition and live weight (LW) gain. In most cases, Karoline behaves similarly to what is generally observed in vivo. The digestion part of Karoline is tested against 61 treatment means from studies with cannulated dairy cows and growing cattle carried out in the Nordic countries. Simulated (X) and observed (Y) parameter values are compared in meta-analyses using both an unadjusted regression and a mixed model regression procedure with the individual experiment as a random factor. The parameters compared are duodenal flows of organic matter (OM), neutral detergent fibre (NDF), total crude protein (CP), dietary CP and microbial CP as well as faecal flows of OM, NDF and CP. In the mixed model analyses, the fixed regression coefficient is between 0.86 and 1.16, the fixed intercept is between -0.30 and 0.15 kg/day and the overall R2 is between 0.95 and 1.00. The full Karoline model is tested against 142 treatment means from production studies with lactating cows carried out in the Nordic countries. Unadjusted as well as mixed model regression analyses compare simulated (X) and observed (Y) parameter values: MY, energy-corrected milk (ECM) yield, milk fat yield and milk protein yield. The fixed regression coefficient is between 0.74 and 0.83, the fixed intercept is between 0.20 kg/day (milk protein) and 6.1 kg/day (milk), and the overall R2 is between 0.87 and 0.94. Karoline is further validated by a comparison with the CNCPS model. Both models are tested against a Nordic data-set of 75 treatment means from dairy cow production experiments. A deviation index based on mixed model regression analyses is calculated for both models. In this analysis, the deviation index is 0.19 and 0.07 for CNCPS and Karoline, respectively. For a perfect model, i.e. identical simulated and observed parameter values, the deviation index equals zero. It is concluded that the Karoline model is a useful tool to evaluate feed rations for dairy cows by predictions of nutrient digestibility and MY. However, predictions of the milk composition, i.e. fat and protein contents, need to be improved. Possible reasons for problems in the model are discussed.

Other chapters from this book

Introduction Introduction: history, appreciation and future focus. Author(s): France, J.
Chapter: 1 (Page no: 1) The Nordic dairy cow model, Karoline - development of volatile fatty acid sub-model. Author(s): Sveinbjörnsson, J. Huhtanen, P. Udén, P.
Chapter: 2 (Page no: 15) A three-compartment model of transmembrane fluxes of valine across the tissues of the hindquarters of growing lambs infected with Trichostrongylus colubriformis. Author(s): Roy, N. C. Bermingham, E. N. McNabb, W. C.
Chapter: 3 (Page no: 28) Using rumen degradation model to evaluate microbial protein yield and intestinal digestion of grains in cattle. Author(s): Paengkoum, P.
Chapter: 4 (Page no: 33) Simulation of rumen particle dynamics using a non-steady state model of rumen digestion and nutrient availability in dairy cows fed sugarcane. Author(s): Collao-Saenz, E. A. Bannink, A. Kebreab, E. France, J. Dijkstra, J.
Chapter: 5 (Page no: 40) Modelling fluxes of volatile fatty acids from rumen to portal blood. Author(s): Nozière, P. Hoch, T.
Chapter: 6 (Page no: 48) The role of rumen fill in terminating grazing bouts of dairy cows under continuous stocking. Author(s): Taweel, H. Z. Tas, B. M. Tamminga, S. Dijkstra, J.
Chapter: 7 (Page no: 54) Functions for microbial growth. Author(s): López, S. Prieto, M. Dijkstra, J. Kebreab, E. Dhanoa, M. S. France, J.
Chapter: 8 (Page no: 69) Obtaining information on gastric emptying patterns in horses from appearance of an oral acetaminophen dose in blood plasma. Author(s): Cant, J. P. Walsh, V. N. Geor, R. J.
Chapter: 9 (Page no: 84) A model to evaluate beef cow efficiency. Author(s): Tedeschi, L. O. Fox, D. G. Baker, M. J. Long, K. L.
Chapter: 10 (Page no: 99) Prediction of energy requirement for growing sheep with the Cornell Net Carbohydrate and Protein System. Author(s): Cannas, A. Tedeschi, L. O. Atzori, A. S. Fox, D. G.
Chapter: 11 (Page no: 114) Prediction of body weight and composition from body dimension measurements in lactating dairy cows. Author(s): Yan, T. Agnew, R. E. Mayne, C. S. Patterson, D. C.
Chapter: 12 (Page no: 121) Relationships between body composition and ultrasonic measurements in lactating dairy cows. Author(s): Agnew, R. E. Yan, T. Patterson, D. C. Mayne, C. S.
Chapter: 13 (Page no: 127) Empirical model of dairy cow body composition. Author(s): Martin, O. Sauvant, D.
Chapter: 14 (Page no: 135) Simulating chemical and tissue composition of growing beef cattle: from the model to the tool. Author(s): Hoch, T. Pradel, P. Champciaux, P. Agabriel, J.
Chapter: 15 (Page no: 144) Representation of fat and protein gain at low levels of growth and improved prediction of variable maintenance requirement in a ruminant growth and composition model. Author(s): Oltjen, J. W. Sainz, R. D. Pleasants, A. B. Soboleva, T. K. Oddy, V. H.
Chapter: 16 (Page no: 160) Growth patterns of Nellore vs British beef cattle breeds assessed using a dynamic, mechanistic model of cattle growth and composition. Author(s): Sainz, R. D. Barioni, L. G. Paulino, P. V. Valadares Filho, S. C. Oltjen, J. W.
Chapter: 17 (Page no: 171) A kinetic model of phosphorus metabolism in growing sheep. Author(s): Dias, R. S. Roque, A. R. Nascimento Filho, V. F. Vitti, D. M. S. S. Bueno, I. C. S.
Chapter: 18 (Page no: 180) Dynamic simulation of phosphorus utilization in salmonid fish. Author(s): Hua, K. Cant, J. P. Bureau, D. P.
Chapter: 19 (Page no: 192) Development of a dynamic model of calcium and phosphorus flows in layers. Author(s): Dijkstra, J. Kebreab, E. Kwakkel, R. P. France, J.
Chapter: 20 (Page no: 211) Estimating the risk of hypomagnesaemic tetany in dairy herds. Author(s): Bell, S. T. McKinnon, A. E. Sykes, A. R.
Chapter: 21 (Page no: 229) Modelling the effects of environmental stressors on the performance of growing pigs: from individuals to populations. Author(s): Wellock, I. J. Emmans, G. C. Kyriazakis, I.
Chapter: 22 (Page no: 242) Empirical modelling through meta-analysis vs mechanistic modelling. Author(s): Sauvant, D. Martin, O.
Chapter: 23 (Page no: 251) Iterative development, evaluation and optimal parameter estimation of a dynamic simulation model: a case study. Author(s): Barioni, L. G. Oltjen, J. W. Sainz, R. D.
Chapter: 24 (Page no: 257) Segmented, constrained, non-linear, multi-objective, dynamic optimization methodology applied to the dairy cow ration formulation problem. Author(s): Boston, R. C. Hanigan, M. D.
Chapter: 25 (Page no: 275) A model to simulate the effects of different dietary strategies on the sustainability of a dairy farm system. Author(s): Prado, A. del Scholefield, D. Brown, L.
Chapter: 26 (Page no: 281) Advantages of a dynamical approach to rumen function to help to resolve environmental issues. Author(s): Bannink, A. Dijkstra, J. Kebreab, E. France, J.
Chapter: 27 (Page no: 299) Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. Author(s): Kebreab, E. France, J. McBride, B. W. Odongo, N. Bannink, A. Mills, J. A. N. Dijkstra, J.
Chapter: 28 (Page no: 314) Investigating daily changes in food intake by ruminants. Author(s): Dryden, G. M.
Chapter: 29 (Page no: 328) An ingredient-based input scheme for Molly. Author(s): Hanigan, M. D. Bateman, H. G. Fadel, J. G. McNamara, J. P. Smith, N. E.
Chapter: 30 (Page no: 349) Metabolic control: improvement of a dynamic model of lactational metabolism in early lactation. Author(s): McNamara, J. P.
Chapter: 31 (Page no: 366) Rostock feed evaluation system - an example of the transformation of energy and nutrient utilization models to practical application. Author(s): Chudy, A.
Chapter: 32 (Page no: 383) The Nordic dairy cow model, Karoline - description. Author(s): Danfær, A. Huhtanen, P. Udén, P. Sveinbjörnsson, J. Volden, H.
Chapter: 34 (Page no: 416) A composite model of growth, pregnancy and lactation. Author(s): Vetharaniam, I. Davis, S. R.