Two predominant strains of pastured broilers grown in the US are slow-growing Freedom Rangers (FR) and fast-growing Cornish-crossed (CX). Limited microbiological data are available for broilers grown on pasture but new federal regulations for poultry in interstate commerce require testing for E. coli, Salmonella, and Campylobacter. Therefore these two strains were grown and processed to assess carcasses for the required microbiological profile. In each of two replicate trials, 40 FR and 40 CX broilers were obtained at day 1 of age and brooded together for 21 days, then transferred to common pasture with water and supplemental feed. At 83 days and 68 days (to obtain similar market weights between the two different strains) the FR and CX birds, respectively, were removed from feed and water, humanely slaughtered, and processed through evisceration. Twenty pre-chill carcasses from each replication and strain were randomly chosen and sampled for Escherichia coli and Salmonella via whole carcass rinses and ceca were sampled for Campylobacter (one set of ceca were lost during processing in the first experiment). E. coli means were significantly (P < 0.05) higher in CX birds (log 3.7) than FR birds (log 3.4) although differences would be of little practical importance. Salmonella incidence was 90% for CX broilers which was significantly higher than the 65% incidence for FR broilers. No difference in Campylobacter incidence was observed (100% for CX vs. 90% for FR carcasses). At market weight the FR broiler carcasses had slightly lower numbers of E. coli and a lower incidence of Salmonella than the younger CX birds. Results indicate that the slower growing FR broilers, even when mixed with birds with higher numbers of E. coli and a higher incidence of Salmonella, either inherently resist colonization or benefit from the longer residence on pasture.