Immunopathogenesis of Mycobacterium bovis Infection of Cattle
Tuberculosis, Leprosy and Mycobacterial Diseases of Man and Animals

The Many Hosts of Mycobacteria

Edited by

Harshini Mukundan

Los Alamos National Laboratory (LANL), USA

Mark A. Chambers

University of Surrey, UK;
Animal and Plant Health Agency (APHA), UK

W. Ray Waters

United States Department of Agriculture (USDA), USA

and

Michelle H. Larsen

Albert Einstein College of Medicine (AECOM), Yeshiva University, USA
Contents

Contributors

- **Introduction – The Many Hosts of Mycobacteria: An Interdisciplinary Approach to Understanding Mycobacterial Diseases**
 Christine Sizemore, Karen Lacourciere and Tina Parker

PART I. TUBERCULOSIS IN HUMANS

1. **Introduction and Epidemiology of *Mycobacterium tuberculosis* Complex in Humans**
 Isdore C. Shamputa, Sang Nae Cho, Janette Lebron and Laura E. Via

2. **Comparative Mycobacteriology of the *Mycobacterium tuberculosis* Complex**
 Stephen V. Gordon and Marcel A. Behr

3. **Immunopathogenesis of Tuberculosis in Humans**
 Jyothi Rengarajan, Jonathan K. Sia and Cheryl L. Day

4. **Current Methods for Diagnosis of Human Tuberculosis and Considerations for Global Surveillance**
 Rama Murthy Sakamuri, Prashini Moodley, Karina Yusim, Shihai Feng, A. Willem Sturm, Bette T.M. Korber and Harshini Mukundan

5. **Development of Next-generation TB Vaccines: Comparative Approaches in Humans and Animals**
 Michael J. Brennan, Salma Samad and R. Glyn Hewinson

6. **The Continuing Co-evolution of *Mycobacterium tuberculosis* and *Homo sapiens***
 Clifton E. Barry III

PART II. TUBERCULOSIS IN DOMESTICATED AND COMPANION ANIMAL SPECIES

7. **The Global Distribution of *Mycobacterium bovis***
 Noel H. Smith
8 Immunopathogenesis of Mycobacterium bovis Infection of Cattle
 W. Ray Waters, Jayne C. Hope, Carly A. Hamilton, Mitchell V. Palmer, James
 McNair, Robin A. Skuce, Adrian R. Allen, Bryce M. Buddle, Bernardo
 Villarreal-Ramos and H. Martin Vordermeier

9 Diagnosis of Mycobacterium bovis Infection in Cattle
 Bryce M. Buddle, Geoffrey W. de Lisle, W. Ray Waters and H. Martin Vordermeier

10 Vaccination of Cattle Against Tuberculosis
 H. Martin Vordermeier, Bryce M. Buddle, Bernardo Villarreal-Ramos,
 Gareth. J. Jones, R. Glyn Hewinson and W. Ray Waters

11 Mycobacterium bovis/M. caprae Infection in Goats and Sheep:
 Introduction, Epidemiology and Control Measures
 Alicia Aranaz

12 Mycobacterial Infections in Camelids
 Shelley Rhodes, Tim Crawshaw, Ricardo de la Rua-Domenech, Sue Bradford,
 Konstantin P. Lyashchenko, Gezahegne Mamo, Di Summers,
 Ulli Wernery and Patrik Zanolari

13 Tuberculosis in Companion Animal Species
 Danielle A. Gunn-Moore and Stephanie Lalor

PART III. MYCOBACTERIAL INFECTIONS IN ZOO SPECIES

14 Mycobacterial Infections in Elephants
 Susan K. Mikota, Konstantin P. Lyashchenko, Linda Lowenstein,
 Dalen Agnew and Joel N. Maslow

15 Mycobacterial Infections in Other Zoo Animals
 Michele A. Miller and Konstantin P. Lyashchenko

PART IV. TUBERCULOSIS IN WILDLIFE

16 Tuberculosis in Badgers (Meles meles)
 Mark A. Chambers, Eamonn Gormley, Leigh A.L. Corner,
 Graham C. Smith and Richard J. Delahay

17 Tuberculosis in Pigs and Wild Boar
 Christian Gortazar, Joaquin Vicente, Jose de la Fuente,
 Graham Nugent and Pauline Nol

18 Australian Brushtail Possum: A Highly Susceptible Host
 for Mycobacterium bovis
 Bryce M. Buddle, Geoffrey W. de Lisle and Leigh A.L. Corner

19 Tuberculosis in Wild and Captive Deer
 Mitchell V. Palmer, Daniel J. O’Brien, J. Frank Griffin, Graham Nugent,
 Geoffrey W. de Lisle, Alastair Ward and Richard J. Delahay

20 Tuberculosis in South African Wildlife: Lions, African Buffalo
 and Other Species
 Anita L. Michel, Lin-Mari de Klerk-Lorist, Peter Buss,
 Markus Hofmeier, Dave Cooper and Ray G. Bengis
Introduction – The Many Hosts of Mycobacteria: An Interdisciplinary Approach to Understanding Mycobacterial Diseases

Christine Sizemore,* Karen Lacourciere and Tina Parker

National Institutes of Health, Bethesda, USA

Mycobacteria have been associated with human and animal disease for millennia. In particular, tuberculosis (TB) continues to cause significant human morbidity and mortality worldwide. The discovery in 1882 of the tubercle Bacillus, *Mycobacterium tuberculosis*, by the German physician and microbiologist Robert Koch was met with great enthusiasm as it defined the infectious nature of the disease. By 1915, a collaboration between the physician Albert Calmette and the veterinarian Camille Guérin resulted in the development of an attenuated strain of the bovine tubercle Bacillus, *Mycobacterium bovis*, that later became the basis of the Bacille Calmette–Guérin (BCG) vaccine, which is one of the most widely used childhood vaccines in the world. This discovery is a wonderful example of how, for centuries, collaborations among multiple scientific disciplines have positively impacted the control of infectious disease.

Since 2007, scientists from the United States Department of Agriculture’s Agricultural Research Service (USDA, ARS), the Albert Einstein College of Medicine (AECOM) and the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH) have been convening the workshop *Many Hosts of Mycobacteria*. The workshop was founded on a principle of cross-disciplinary inclusion and the belief that by bringing together all members of the mycobacterial research community we could achieve a better understanding of mycobacteria and the diseases caused by them, and thus contribute to knowledge and the development of products to improve global health.

When researching a human infectious disease, experimental animal models are often employed to create or test hypotheses. However, the study of natural infections in animals, and the information that can be gained from them, is often overlooked. The knowledge that can be obtained by determining mechanisms that drive host specificity for related pathogens, as well as understanding disease transmission and differences in disease progression and presentation for the same pathogens in different hosts, can enhance our understanding of human disease. Focusing only on human disease also neglects the role of wildlife, livestock and other peri-domestic animals in transmission of infectious diseases. By bringing together a multidisciplinary team of leading scientists studying mycobacterial infections in humans and animals, *Many Hosts*...
Introduction – The Many Hosts of Mycobacteria

of *Mycobacteria* created a venue for sharing knowledge about the spectrum of mycobacterial diseases, exploring host–pathogen variability, and understanding what the commonalities and differences in disease presentation and host specificity teach us.

Promoting discussion among experts in scientific disciplines that traditionally do not interact has resulted in the critical evaluation of mycobacterial infections in natural and artificial hosts and the identification of areas of mutual interest and collaboration. Participants in the workshop span from basic scientists to clinicians, animal modellers and product developers to individuals with zoological and wildlife expertise to cover the breadth of known species of mycobacteria and the various hosts that harbour them.

Many Hosts of Mycobacteria was initially driven by the TB research community’s need to better understand and interpret the results of studies of candidate vaccines against human TB that were tested in a variety of animal species – cattle, non-human primates, guinea pigs and mice. Different animal models are useful for understanding particular aspects of human TB disease, but not all of these animals are practical models for many research needs because of size or cost. Initial discussions focused on differences in the host immune responses, but quickly evolved to include perspectives on how the molecular and pathophysiological differences between various mycobacterial pathogens can manifest with a distinct host or tissue specificity and can be exploited in experimental models. As the workshop progressed, it became clear that these interdisciplinary discussions were providing unique insights that could not be gained from studying individual mycobacteria or hosts alone. By comparing the similarities and differences between each of the mycobacterial pathogens and hosts, the participants gained a better understanding of all mycobacteria. The concept of ‘comparative mycobacteriology’ was born as a framework to evaluate disease pathology and promises to contribute to different aspects of infectious disease research, which could ultimately improve vaccines, diagnostics and therapeutics for mycobacterial diseases such as TB and leprosy.

Although the greatest need for development of interventions for mycobacterial diseases is to improve human health, there are also many important applications for animals. Cattle are often infected from wildlife reservoirs such as deer, badgers or possums. Once an infection in livestock is discovered, the entire herd is typically culled, leading to considerable economic losses. In resource-limited settings where families are dependent on cattle for food and income, infected animals are frequently not culled and may lead to infection of humans through the consumption of meat or milk. A vaccine for cattle or the wildlife reservoirs of mycobacteria may minimize these infections. Zoo animals such as elephants can contract TB from their handlers. Colonies of non-human primates that are used in research are also affected by *M. tuberculosis* infection resulting in the removal and loss of valuable animals and research. A diagnostic that allows earlier detection and isolation to prevent transmission may be able to help protect these important animals.

The *Many Hosts of Mycobacteria* workshop has fostered an interdisciplinary approach and unique collaborations that benefit multiple scientific communities. The sharing of ideas and results across disciplines has allowed for enhancement of research in *M. tuberculosis, M. bovis, M. leprae* and other non-tuberculous mycobacteria. Most of all, it has increased the knowledge of researchers who are developing vaccines, diagnostics and drugs to prevent, diagnose and treat some of the oldest pathogens of man. This book serves to share the lessons learned from these workshops not only within the mycobacterial community, but also to a wider audience, as this approach may benefit other fields of research.

About the Cover

Mycobacterial diseases affect humans, livestock and wildlife in all regions of the world. Pathogenic mycobacteria can infect a wide variety of species, passing between them in complex webs of infection. We chose the cover photograph to illustrate vividly the intimate human–animal interface in a region of the
world (Sub-Saharan Africa) with a relatively high prevalence of bovine and human tuberculosis, leprosy and Buruli ulcer. The intent of the image is to capture the One Health essence of mycobacterial disease research. The suckling calf in the image demonstrates the role of ingestion of non-pasteurized milk in Mycobacterium bovis transmission. The indigenous Zebu cattle and Ethiopian tribesman portray genetic and socio-economic factors affecting control measures in diverse populations. In the background, chickens (likely to be harbouring M. avium) represent the confounding role of non-tuberculous mycobacteria for development of improved vaccines and diagnostic tests. In addition, iconic wildlife species (e.g. lions, elephants and rhinoceros) are native to Sub-Saharan Africa and survival of these species is hindered by chronic and debilitating infections with tuberculous mycobacteria species. (Photograph taken by Rea Tschopp (Wildlife Veterinarian/Epidemiologist at the Armauer Hansen Research Institute in Addis Ababa, Ethiopia).)
Plate 1. Mutational patterns associated with Rif resistance from sequences with known drug sensitivity, organized according to phylogenetic relationships.
Plate 2. Crystal structure of the deazaflavin-dependent nitroreductase (Ddn) from Mtb with cofactor F420 (50). Despite a wealth of knowledge on Ddn as an activator of these important drug candidates little biological information on their physiological role has been obtained.

Plate 3. Large caseous lesion with cavitation in the lungs of a skin-test-negative alpaca with a cough and continuous hiccups. No other symptoms. The photograph shows a liquefactive flowing abscess, devastating the lung tissue, potentially resulting in highly infectious exhaled breath. (Photograph courtesy of James Barnett, APHA.)

Plate 4. Lesions of the tracheal mucosa in an apparently healthy, skin-test-negative alpaca euthanized as a direct contact of a herd mate with a cough. The pale purulent matter in the centre of the ulcerated lining contains Mycobacterium bovis. (Photograph courtesy of James Barnett, APHA.)

Plate 5. Parietal pleura of a llama with pearlescent lesions of tuberculous pleurisy. (Photograph courtesy of Tim Crawshaw, APHA.)
Plate 6. Multiple foci in llama mediastinal lymph node showing scattered caseous foci. (Photograph courtesy of Tim Crawshaw, APHA.)

Plate 7. Dorsal view of the thoracic viscera of an alpaca showing grossly enlarged (20×) bronchial and mediastinal lymph nodes almost completely with caseous material and containing *Mycobacterium bovis*. This alpaca was also skin-test-negative with no outward symptoms other than ‘not his usual self’. (Photograph courtesy of James Barnett, APHA.)

Plate 8. Tuberculous lesions on the mesenteric lymph node and wall of intestine (a), hepatic (b) and cranial mediastinal (c) lymph nodes of a *Mycobacterium bovis*-infected dromedary in Ethiopia. (Photographs courtesy of BTB Research Group – ALIPB – Addis Ababa University, Ethiopia.)
Plate 9. Lung from Elephant TB Stat-Pak®- and MAPIA-reactive African elephant. Trunk wash culture negative but culture positive for *Mycobacterium tuberculosis* at necropsy. Miliary to confluent granulomatous pneumonia. Note the variable appearance from granular to smooth and waxy or ‘lardaceous’. (Image taken by Susan Mikota.)

Plate 10. Lung from Elephant TB Stat-Pak®, and MAPIA-reactive African elephant. Trunk wash culture negative but culture positive for *Mycobacterium tuberculosis* at necropsy. Large solid granuloma with ‘lardaceous’ texture and scattered chalky foci of mineralization. (Image taken by Susan Mikota.)

Plate 11. Asian elephant, Elephant TB Stat-Pak® and MAPIA reactive; trunk wash culture negative but culture positive for *Mycobacterium tuberculosis* at necropsy. Partially fixed lung with localized region with miliary granulomas, interlobular septal fibrosis and plugging of bronchioles with thick mucopurulent exudate. (Image taken by Dr Steven Kubiski, UC Davis Veterinary Medical Teaching Hospital.)

Plate 12. Asian elephant post-treatment for TB. Lung with regionally extensive consolidation and fibrosis (right side of image) and large white foci of mineralization (old granulomas). Culture and PCR were negative. (Image taken by L.J. Lowenstine, UC Davis Veterinary Medical Teaching Hospital.)
Plate 13. Asian elephant, Elephant TB Stat-Pak® and MAPIA reactive; trunk wash culture negative but culture positive for *Mycobacterium tuberculosis* at necropsy. Histiocytic granuloma with a single multinucleated giant cell and peripheral, infiltrating lymphocytes and neutrophils. Surrounding alveoli (at top of image) are flooded with oedema (haematoxylin and eosin, H&E). (Image taken by L.J. Lowenstine.)

Plate 14. Asian elephant, Elephant TB Stat-Pak® and MAPIA reactive; trunk wash culture negative but culture positive for *Mycobacterium tuberculosis* at necropsy. Pulmonary granuloma with central caseous necrosis (upper right), histiocytes, neutrophils and lymphocytes and a thin rim of fibrosis (haematoxylin and eosin, H&E). Acid-fast stains were negative. (Image taken by L.J. Lowenstine.)

Plate 15. Asian elephant, Elephant TB Stat-Pak® and MAPIA reactive; trunk wash culture negative but culture positive for *Mycobacterium tuberculosis* at necropsy. Necrotizing and histiocytic bronchiolitis with peribronchiolar infiltration by lymphocytes and neutrophils (haematoxylin and eosin, H&E). (Image taken by L.J. Lowenstine.)
Plate 16. *Mycobacterium bovis* in lungs of a lion (*Panthera leo*).
Plate 17. Pulmonary lesions associated with *Mycobacterium kansasii* infection in a bontebok (*Damaliscus pygaragus dorcas*).
Plate 18. Pulmonary lesions associated with *Mycobacterium tuberculosis* infection in a black rhinoceros (*Diceros bicornis*).
Plate 19. *Mycobacterium avium* lesions in the liver of a white-winged wood duck (*Asarcornis scutulata*).
Plate 20: Origin of lineage six wildlife-associated TB strains in southern Africa (circles with yellow boundary) and human-associated \textit{M. africanum} in northwest Africa (orange circles with yellow boundary). Other wildlife-adapted TB strains identified in the phylogenetic schematic (circles with black boundary) are included for comparison.

Plate 22. Schematic of the phylogenetic relationships between Mycobacterium tuberculosis complex species, with the lineage of six wildlife-associated TB strains highlighted (red box). The phylogenetic relationships are based on single-nucleotide polymorphisms (white boxes) and the presence or absence of regions of difference (grey boxes), modified from Alexander et al., 2010.
Introduction

Infection with the tubercle bacillus, and the ensuing immunopathogenesis, is a quintessential example of the complex and ancient interplay between host and pathogen (reviewed in Cooper and Torrado, 2012; Reece and Kaufmann, 2012). Upon entry into the host, *Mycobacterium tuberculosis* has a unique ability to delay onset of adaptive immune responses in mice or humans (reviewed in Ottenhoff, 2012). Likewise, adaptive responses are delayed with *M. bovis* infection of cattle (Vordermeier et al., 2009a; Waters et al., 2009). This delay in the adaptive response is likely to give the pathogen both a foothold for infection (a critical mass of tubercle bacilli) and a defined niche to dictate the ensuing response (Cooper, 2009). The tubercle bacillus is also armed with a multitude of immune evasion tactics enabling intracellular survival and persistence. Examples given by Ottenhoff (2012) include:

1. Inhibition of important host defence mechanisms such as phagosome maturation and phagolysosome fusion, autophagy, antigen processing and presentation, apoptosis and interferon (IFN)-γ receptor signalling.
2. Capacity to escape from the hostile phagosome to the cytoplasm.
3. Mechanisms to inhibit and scavenge toxic oxygen and nitrogen intermediates.

Once infection is established, primarily lymphocytes and macrophages are recruited to the site of infection in humans and cattle, forming granulomas. Granulomas are dynamic structures with continual movement of host cells into and out of the structure, orchestrated by the host as well as by the pathogen (Ramakrishnan, 2012). With humans, various stages of tuberculosis are recognized including active (either primary or post-primary), latent and reactivation or secondary disease (Barry et al., 2009; Young et al., 2009; Hunter, 2011). Primary disease occurs when immunocompetent individuals are first infected with *M. tuberculosis*. With this form, the bacillus typically spreads from the initial site of infection to regional lymph nodes (and potentially elsewhere) until immunity develops and the infection is controlled. Only 5–10% of individuals infected...
Immunopathogenesis of *Mycobacterium bovis* Infection of Cattle

137

With *M. tuberculosis* develop clinical manifestations of primary tuberculosis within 2 years after exposure. The majority of infected individuals develop latent tuberculosis, defined as having evidence of *M. tuberculosis* infection by tuberculin skin test or IFNγ release assay (IGRA) without clinical signs of disease (Lin and Flynn, 2010). Latent infection is a dynamic equilibrium in which the host controls but does not clear the bacillus (Behr and Waters, 2013). With *M. bovis* infection of cattle, the disease is generally considered slowly progressive, without clear delineation of the various stages associated with tuberculosis of humans (Pollock *et al*., 2006). As with human tuberculosis (originally described in Bayle, 1810; Laënnec, 1837), the disease in cattle may be defined microscopically according to the degree of fibrosis, necrosis, caseation and mineralization (Wangoo *et al*., 2005). Thus, there are many similarities in the immunopathogenesis of bovine and human tuberculosis, and a few distinct differences.

Pathogenesis

The caseonecrotic granuloma is one of the hallmarks of tuberculosis. With the aim of gaining an understanding of the temporal evolution of the granuloma, researchers have performed sequential analysis of granulomas in experimentally infected cattle (Cassidy *et al*., 1998; Palmer *et al*., 1999). Microscopic granulomas can be seen as early as 7–15 days after experimental infection with 10^5 colony-forming units of *M. bovis* (Palmer *et al*., 2007). Early lesions, categorized as Stage I (initial, Fig. 8.1) granulomas (Wangoo *et al*., 2005; Palmer *et al*., 2007) are composed of accumulations of epithelioid macrophages with low numbers of lymphocytes, neutrophils and Langhan’s multinucleated giant cells. Importantly, necrosis is absent in Stage I granulomas. Between 21 days and 60 days after experimental infection there is a steady progression through granuloma stages. Stage I granulomas are followed by Stage II (solid, Fig. 8.1) granulomas that are similar to Stage I granulomas but have central infiltrates of neutrophils and lymphocytes and a thin fibrous capsule. Central necrosis may be present. Stage III (necrotic, Fig. 8.1) granulomas exhibit complete fibrous encapsulation and significant central necrosis. Stage IV (necrotic and mineralized, Fig. 8.1) granulomas are characterized by multiple coalescing caseonecrotic granulomas with multicentric necrosis, dystrophic mineralization and thick fibrous encapsulation. By 60 days after experimental infection, granulomas of all four stages may be present on the same microscopic section of tissue. In fact, granulomas with morphology typical of Stage I may be seen in proximity to granulomas of more advanced stages, and are sometimes referred to as satellite granulomas. Acid-fast bacilli can be present in all stages
but have been shown to be most numerous in Stage IV granulomas (Palmer et al., 2007).

T-cell immunity is considered essential in clearance of mycobacterial infections. As such, CD3⁺ CD4⁺ T cells are the predominant lymphocyte subtype in granulomas of all stages. Lower numbers of CD8⁺ T cells, γδ T cells, as well as B cells, can be found in Stages I–III. Stage IV granulomas may contain dense clusters of B cells in the periphery or outside the capsule. γδ T cells have been described in both early- (Palmer et al., 1999) and late-stage granulomas (Wangoo et al., 2005).

It has been shown that the dose of infection when administered within a relatively low dose range (i.e. 1–1000 colony-forming units, CFU) does not necessarily correlate to the level of pathology once infection takes place (Johnson et al., 2007). However, in this same study it was shown that the proportion of
cells expressing IFNγ was directly affected by the infection dose. Thus, the nature of the immune response observed at the site of infection may vary according to the initial bacterial load; the higher the infectious dose, the higher the proportion of IFNγ positive cells in the granuloma.

In another study, Aranday-Cortes et al. (2013) determined that the presence of certain cytokines and chemokines was related to the stage of progression of the granuloma. Thus, IL-17A and CXCL9 were found to be transcribed to a greater extent in type I as compared to type IV granulomas. CXCL10 was also found to be transcribed to a greater extent in type I as compared to type IV granulomas; however, this was not a linear relationship, as type II and type III granulomas expressed lower CXCL10 than type IV granulomas. These results indicate that there may be characteristic responses in the development of the granuloma that could inform whether a lesion is progressing or is being contained. However, the data also indicate that the immune response during tuberculosis is complex and may not necessarily follow a linear pattern of progression.

An intended goal of vaccination is to elicit a more rapid and targeted immune response upon subsequent exposure to the pathogen, thereby limiting granuloma development. Johnson et al. (2006) found that granulomas in cattle vaccinated with bacille Calmette-Guerin (BCG) subsequently challenged with M. bovis were reduced in number and size as compared to granulomas found in non-vaccinated cattle challenged with M. bovis. Importantly, the percentage area stained for lymphocytes (i.e. primarily CD3+ and γδ TCR+ cells) and macrophages (i.e. CD68+ cells) was reduced in BCG-vaccinated as compared to non-vaccinated animals after challenge with virulent M. bovis. Additionally, staining for B cells (i.e. CD79+ cells) and IFNγ clustered more intensely in the medullary regions of lymph nodes of vaccinated animals as compared to those of controls. Thus, the priming of cattle with BCG affects the subsequent immune response to the pathogen at the site of infection.

It is likely that the classification of the TB granuloma into stages of development as well as determining the immune response within and in the surrounding areas of lesions will inform future studies in vaccine and diagnostic developments. Dean et al. (2014) recently used the classification of the TB granuloma as a tool to determine the level of vaccine protection against M. bovis. Future studies aimed at finding correlates between peripheral and local immune responses will permit the development of tools to assist discrimination between vaccinated and infected animals, as well as defining responses favourable for controlling infection. This in turn will inform vaccine and diagnostic development.

Innate Immune Responses and Initiation of Adaptive Immune Responses

Dendritic cells and macrophages

Dendritic cells (DC) are a heterogeneous population of professional antigen-presenting cells (APC) which are essential mediators of immunity (Banchereau and Steinman, 1998) and tolerance (Steinman et al., 2003). They originate from stem cell precursors in the bone marrow which give rise to circulating myeloid or lymphoid precursors within the blood that enter tissues and reside as immature DC. These cells act as sentinels and respond to infection, inflammatory signals or tissue damage by migrating away from the periphery towards lymph nodes where immune responses may be induced. During migration DC undergo maturation characterized by an increased expression of costimulatory molecules, adhesion molecules, reduced endocytosis and redistribution of intracellular MHC II to the cell surface. Thus DC are primed to effectively stimulate naïve or memory T-cell responses within the lymph nodes.

In cattle there is evidence (as in other species) for considerable heterogeneity in DC populations: both functional and phenotypic divergence has been reported, and cells of both myeloid and lymphoid origin are present (Howard and Hope, 2000; Miyazawa et al., 2006; Reid et al., 2011). Subpopulations of DC draining the skin (McKeever et al., 1991; Howard et al., 1997; Brooke et al., 1998) and mucosal
surfaces have been described which have differential capacity not only to stimulate T-cell responses (Howard et al., 1997) but which also display divergent capacities to interact with mycobacteria. Monocyte-derived DC (MoDC) infected with M. bovis or BCG induced effective memory CD4^+ and CD8^+ T-cell responses (Hope et al., 2000). However, assessment of ex vivo populations of DC isolated from afferent lymphatic vessels revealed that only a subset could uptake and present antigens from BCG or M. bovis (Hope et al., 2012). This could impact vaccine efficacy or the induction of protective immunity to infection.

Macrophages are a diverse population of specialized phagocytic cells which are essential for host defence, homeostasis and wound repair. They are derived from bone marrow precursors and circulating blood monocytes which differentiate into resident macrophages or DC upon tissue entry (Verschoor et al., 2012). Macrophages are considered the major host cell for mycobacteria in vivo and, due to the respiratory route of entry, alveolar macrophages have a pivotal role during mycobacterial immune responses. Macrophages express an array of cell surface receptors that recognize mycobacteria including toll-like receptors (TLRs) (Means et al., 1999), the macrophage mannose receptor that identifies mannosylated glycoproteins, Fc receptors which can bind opsonized cells, and complement receptors (Ernst, 1998). The early interactions of mycobacteria with DC in the respiratory tract also involve TLRs including TLR2, 4 and 9 but, binding to dendritic cell specific intracellular adhesion molecule 3, grabbing non-integrin (DC-SIGN) is particularly important for uptake of M. tuberculosis (Means et al., 1999; Tsuji et al., 2000; Von Meyenn et al., 2006). The downstream events triggered by binding and uptake lead to divergent responses in macrophages when compared with DC with respect to bacterial killing/survival, cytokine and cell surface molecule expression, antigen presentation and trafficking, all of which can directly influence the outcome of infectious challenge.

In vitro bovine monocyte-derived macrophages and MoDC were equally phagocytic for M. bovis or BCG, yet higher numbers of bacilli were retained within MoDC compared with macrophages, reflecting preferential survival of mycobacteria within DC. In addition, DC infected with M. bovis or BCG up-regulated CD80, CD40 and MHC II, which are required for antigen presentation and stimulation of T-cell responses. Coupled with the ability of DC to migrate towards lymph nodes this could indicate that infection of DC would prime T-cell immune responses to infection. Different cytokine profiles have also been reported for macrophages and DC in response to mycobacterial exposure: typically, MoDC secrete high levels of IL-12 associated with induction of IFNγ by T cells and NK cells (Denis et al., 2007) whereas macrophage responses are dominated by TNFα, IL-1β and IL-10 (Hope et al., 2004). In addition, infected MoDC and macrophages have been shown to express inflammatory chemokines (Widdison et al., 2011; Siddiqui and Hope, 2013) to attract NK cells and granulocytes in vitro. The expression profiles of key chemokines were significantly different between MoDC and macrophages (Siddiqui and Hope, unpublished observations), suggesting the potential chemotraction of different subsets of lymphocytes. In vivo chemokine gradients produced by M. bovis-infected APC would contribute to inflammatory influx into the tissues and granuloma formation.

Mycobacteria can persist within macrophages and DC by preventing phagosome maturation and evading lysosome fusion (Flynn and Chan, 2003; Nguyen and Pieters, 2005; Rohde et al., 2007) thereby evading intracellular destruction and reducing antigen presentation and subsequent T-cell responses. The production of nitric oxide (NO) is a key response contributing to the capacity of cells to control intracellular bacteria. In bovine studies, NO production was predominantly seen in macrophages (Denis and Buddle, 2008) and could be significantly enhanced by the addition of IFNγ (Piercy et al., 2007). The activation of macrophages with IFNγ promotes intracellular killing, at least in part through the induction of autophagy which has been shown to contribute not only to destruction of intracellular M. tuberculosis and BCG but also to increase antigen presentation to T cells (Gutierrez et al., 2004; Puleston and Simon, 2014).

Thus, early differential interactions of M. bovis with APC are central to the downstream events occurring post-infection. Further reciprocal stimulation of innate and adaptive cells...
will contribute to the eventual outcome of exposure and determine whether disease or immunity ensues.

Natural killer cells

NK cells are large granular lymphocytes which are traditionally cells of the innate immune system but as essential drivers of the adaptive immune response, NK cells are found at the interface between innate and adaptive immunity. NK cells have two main effector functions: cytotoxicity of target cells through the release of preformed granules containing perforin and granulysin (Reeffman et al., 2010) and cytokine production including IFN-γ, TNF-α, GM-CSF (Fehniger et al., 1999; Cooper et al., 2001; Boysen et al., 2006), IL-10 (Fehniger et al., 1999; Cooper et al., 2001) and IL-22 (Cella et al., 2009; Dhiman et al., 2009). NK cell function and maintenance of self-tolerance is determined by a complex interplay between activating and inhibitory NK cell receptors (Long et al., 2013). These germ line encoded receptors enable NK cells to distinguish cellular stress related ligands, MHC class I molecules and MHC class I-like molecules. In addition to key roles in innate defence, NK cells are located at the bridge between innate and adaptive immune responses through interactions with APC and have recently been shown to have features of adaptive immunity including ‘memory’. Evidence for NK cell memory was first identified in mice (O’Leary et al., 2006; Sun et al., 2009) and human memory-like NK cells have been shown to migrate into tuberculous pleural fluid via a CXCR3 and CXCR4 axis (Fu et al., 2011, 2013).

Phenotypically distinct subsets of NK cells with divergent functions have been described across species. Human NK cells are defined as CD3- with variable expression of CD56 and CD16 (Cooper et al., 2001). Similarly, discrete subsets of NK cells also exist in mice which are differentiated based on their expression of CD27 and CD11b (Chiossone et al., 2009). NKp46 (CD335), a natural cytotoxicity receptor expressed exclusively by NK cells, is a pan species marker that identifies this heterogeneous cell population (Moretta et al., 2005; Walzer et al., 2007b). The development of a monoclonal antibody specific to this receptor has allowed for the characterization of NK cells in cattle (Storset et al., 2004). Bovine NK cells can be subdivided into two subsets based on their differential expression of the adhesion/costimulatory molecule, CD2 (Boysen et al., 2006). The NKp46+ CD2+ and NKp46+ CD2- (referred to as CD2- herein) subsets are predominantly localized within the peripheral blood and lymph nodes/afferent lymph respectively (Boysen et al., 2006, 2008). Within bovine peripheral blood, NK cells account for 0.5–10% of the total lymphocyte population with an increased prevalence in neonatal calves, particularly those aged between 8 and 120 days old (Kulberg et al., 2004; Graham et al., 2009).

NK cells are responsive during mycobacterial infection in vivo. Following infection of mice with *M. tuberculosis* or *M. bovis* BCG, increased numbers of activated NK cells are recruited to the lungs where they secrete IFN-γ (Junqueira-Kipnis et al., 2003). During studies of active *M. tuberculosis* infection in humans, NK cells infiltrate the lungs where they are localized to granulomas (Portevin et al., 2012). Furthermore, the importance of NK cell- and γδ T cell-derived IFN-γ during BCG immunization of infants has been recently defined, highlighting the significance of innate effector cells during anti-mycobacterial immune responses (Zufferey et al., 2013). The frequency, phenotype and function of NK cells during *M. bovis* or *M. bovis* BCG infection in cattle have not yet been fully defined.

Early interactions between populations of innate immune cells, particularly NK cells and DC, are fundamental in determining the nature of the adaptive immune response. Nevertheless, direct activation of NK cells has been reported, for example binding of *M. bovis* BCG to NK cells via NKp44 (Esin et al., 2008) or recognition of *M. bovis* via TLR2 expressed by human NK cells (Marcenaro et al., 2008). However, for the most part, NK cells require indirect activation through interplay with APC in order to become functionally mature (Lucas et al., 2007). In cattle, Hope et al. (2002) described interactions between NK cells and DC in the context of mycobacteria. An NK-like
population was shown to proliferate and produce IFNγ in response to M. bovis BCG infected DC (Hope et al., 2002). More recently it was shown that preferential stimulation of CD2- NK cells occurred following co-culture of bovine NK cells with M. bovis-infected DC (Siddiqui and Hope, 2013). This subset was effectively recruited in response to chemokines secreted by the DC resulting in significant expression of IFNγ which could potentiate Th1 bias and the development of protective immunity.

A central role for IL-12 in the cross-talk between DC and NK cells is evident from a number of studies. DC-derived IL-12 acting in synergy with IL-18 is essential to drive cytokine production by NK cells (Ferlazzo et al., 2004; Chaix et al., 2008). Bovine DC-secreted IL-12 in response to M. bovis or M. bovis BCG (Hope et al., 2004) and blockade of IL-12 secretion partially abrogated the capacity of NK cells to produce IFNγ in response to infected DC (Siddiqui and Hope, 2013). Importantly, the ability of DC to produce IL-12 depends on rapid IFNγ production by NK cells (Gerosa et al., 2002; Piccoli et al., 2002; Mailliard et al., 2003), resulting in a positive feedback loop involving secretion of IL-12 and IFNγ from mature DC and NK cells, respectively. This demonstrates the reciprocal nature of NK-DC interactions with effects on both cell populations being evident. DC that have been in contact with NK cells were shown to increase IL-12 (Van Elssen et al., 2010), CCR7 expression and, in cattle showed enhanced expression of MHC class II (Siddiqui and Hope, 2013). Thus NK cells may influence the adaptive immune response by inducing effective APC.

Bovine NK cells stimulated with IL-2, IL-15, IL-2/12 or IL-12/15 restrict the replication of M. bovis BCG within monocyte-derived and alveolar macrophages (Endsley et al., 2006). Additionally, NK cells proliferate and produce IFNγ in response to interactions with M. bovis-infected macrophages, which enhances the release of IL-12 and NO by activated macrophages (Denis et al., 2007). Thus exposure of macrophages to NK cells augments mycobacteria killing. Whether bovine NK cells exposed to M. bovis-infected DC are increased in their cytolytic potential for immature DC, as demonstrated for human NK cells (Ferlazzo et al., 2004), remains to be elucidated.

Protective immunity against M. bovis infection in cattle is driven by Th1 polarized immune responses which are characterized by IFNγ production (Buddle et al., 2005). Interactions between NK cells and DC in vivo were shown in murine models to mediate the induction of Th1 responses through the secretion of NK cell-derived IFNγ (Martín-Fontecha et al., 2004). Co-localization between NK cells, DC and T cells has been demonstrated in lymph nodes indicating a role for innate immune cell interactions in shaping T-cell responses in vivo (Bajenoff et al., 2006; Lucas et al., 2007; Walzer et al., 2007a). Further studies are essential to determine if bovine NK cells, DC and T cells co-localize in vivo and whether the reciprocal interactions between NK cells and DC can influence downstream responses of CD4+ and CD8+ T cells such that protective immunity may be induced.

Polar and apolar lipid fractions

The first point of contact between M. bovis and its host is likely to be interaction between innate immune cells such as macrophages or dendritic cells (DC) and bacterial surface molecules, many of which are lipids or contain lipid moieties. A number of M. tuberculosis lipid compounds have been described to interact with receptors on DC or macrophages such as lipomannan (LM), lipoarabinomannan (LAM), phosphatidylinositol mannosides (PIMs), and cord factors trehalose mono- and dimycolate (TMM and TDM) as well as the phthiocerol dimycocerosates (PDIMs) (see Kremer and Besra, 2005, for details on mycobacterial lipids). These surface-bound mycobacterial lipids interact with a variety of innate surface receptors including Toll- (Underhill et al., 1999) and C-type lectin receptors such as DC-SIGN (Ehlers, 2010) modulating innate immune responses. For example, it has been shown that monomycolyl glycerol (MMG) modulates host immunity resulting in hypervirulence (Reed et al., 2004). However, few data exist which describe the effects of M. bovis-derived lipids on bovine innate immune cells with only a few studies using non-target-species animal models or compounds not directly isolated from
M. bovis. This is therefore a field that invites more and detailed work.

In a recent study (Pirson et al., 2012), M. bovis polar and apolar lipid preparations were prepared and assessed for biological activity in bovine monocytes, monocyte-derived macrophages and monocyte-derived DCs (MoDC). The apolar lipid preparation contained TDM, TMM, PDIMMs, PGL and MMG; while the polar fraction contained, among other lipids, a range of PIMS, penta-acyl trehalose and glucose monomycolate (GMM). These lipid fractions, particularly the polar fractions, altered the cytokine production profile by both fresh and cultured bovine monocytes as well as MoDC inducing significant levels of IL-10, IL-12, MIP-1β, TNFα and IL-6. Further, BoLA class II, CD86 and CD1b expression decreased on all cell types tested after exposure to the polar lipid fraction. Polar lipids also significantly increased CD40 expression only on monocytes and monocyte-derived macrophages but had no effect on its expression on MoDC. Finally, M. bovis polar lipid-treated macrophages were less capable as APC than untreated macrophages, while similar treatment of MoDC had no effect on their capability to stimulate allogenic mixed lymphocyte reactions. These data demonstrated that M. bovis lipids modulate innate cell responses and in particular may hamper the ability of the host APCs to induce an appropriate immune response. As noted above, differential responses of macrophages and DC may also be relevant to the induction of downstream immune responses. Recent studies (Pirson and Vordermeier, unpublished data) indicate that M. bovis lipids also stimulate IFNγ production by NK cells.

Cell-mediated Immune Responses: Correlates of Protection versus Pathology

IFNγ and delayed type hypersensitivity (DTH) responses

A clear feature of the bovine immune response to M. bovis infection is an early and persistent production of IFNγ in response to various M. bovis antigens, detectable both in vivo and within in vitro re-stimulation assays (i.e. IGRA) (Pollock et al., 2001). Peripheral IFNγ responses to complex and specific mycobacterial antigens are consistently detectable 2–3 weeks after experimental infection (Waters et al., 2010). As with M. tuberculosis infection of humans, CD4, CD8 and γδT cells (as well as NK cells) contribute to the response (Pollock et al., 2001; Endsley et al., 2009); however, T helper 1 (Th1) CD4 T cells are generally considered the predominant cell type responsible for the robust IFNγ response (Hope et al., 2000; Walravens et al., 2002). Clearly, CD4 T cells and an intact Th1 response are essential for control of M. bovis infection in cattle. These responses, however, are not sufficient for clearance as M. bovis infection almost invariably results in persistent and progressive disease. Given the importance of Th1 cells in the adaptive response to tuberculosis, it is not surprising that IFNγ release assays (IGRAs) and DTH (i.e. skin test) responses are useful correlates to infection (reviewed by Schiller et al., 2010). The level of these responses, however, do not necessarily correlate with the severity of infection (Waters et al., 2012). Most effective tuberculosis vaccines also elicit specific IFNγ and DTH responses (Black et al., 2002), but not all vaccines that induce IFNγ and DTH responses are protective against tuberculosis and the amount of IFNγ produced in response to vaccination does not necessarily correlate with the level of protection afforded by the vaccine (Mittrücker et al., 2007; Abebe, 2012; Waters et al., 2012). Also, protection is not linked with maintenance of a DTH response (Whelan et al., 2011a). With that said, non-sensitizing vaccines (e.g. doses of BCG that do not elicit a DTH response) have proven ineffective in vaccine efficacy studies with cattle (Buddle et al., 2011). Evaluation of IFNγ responses after experimental infection may also be useful indicators of protection, or lack thereof, in vaccine efficacy studies. Responses with diagnostic potential, such as IFNγ responses, are generally inversely correlated with responses that predict vaccine efficacy, particularly to antigens not included within the vaccine. For instance, increasing ESAT-6/CFP10-specific IFNγ responses after challenge is a negative indicator of vaccine efficacy (e.g. with BCG or M. bovis ΔRD1 mutant vaccines) as these responses have been shown...
to positively correlate with tuberculosis-associated pathology (Vordermeier et al., 2002; Dietrich et al., 2005; Waters et al., 2009). Thus, failed vaccine approaches resulting in increasing antigen burden and associated pathological changes evoke immune responses such as ESAT-6/CFP10-specific IFNγ responses, indicative of infection.

T-cell effector and central memory (Tcm) subsets

Immunological memory develops naturally as a result of infection and memory T-cell responses are generally considered indispensable for vaccine-elicited protection against most intracellular infectious agents. However, the relationship between effector T-cell responses and long-lasting T-cell memory is not completely understood in humans (Todryk et al., 2009) or cattle (Waters et al., 2009, 2011). Vaccination strategies are often designed to generate memory cells capable of responding rapidly and efficiently upon subsequent infection. Pathogens and their derivatives are generally transported to lymphoid organs by APCs for initiation of T-cell responses. Initiation of this primary response may take days to weeks to develop, relying on exposure of naïve T cells to antigens in secondary lymphoid organs, expansion of antigen-specific T cells and homing of effector cells to the site of infection (Mackay et al., 1990). For instance, with both human and bovine tuberculosis, there is a 2–3 week delay in the response at the primary site of infection that is advantageous for the pathogen, enabling it to define the ensuing response (Ernst, 2012). After initial encounter with cognate antigen and subsequent proliferation/activation, the number of antigen-specific T cells increases up to ~10,000-fold (Hou et al., 1994; Murali-Krishna et al., 1998; Whitmire et al., 1998). In addition to clonal expansion, activated T cells differentiate and exhibit effector functions, expressing important mediators of pathogen control (e.g. IFNγ, TNF-α, IL-17 and cytotoxic granules). If the immune system successfully controls the infection, only a few memory cells remain as 90–95% of the antigen-specific T-cell population undergoes apoptosis (Wilkinson et al., 2009; Totté et al., 2010). Subsets of memory CD4 T cells in humans include: (i) central memory T cells (Tcm, CD62L⁺CCR7⁺) that preferentially localize to lymphoid tissues and exhibit great proliferation potential and IL-2 production; and (ii) effector memory T cells (Tem, CD62L⁻CCR7⁻) that preferentially localize to peripheral tissues and have immediate effector functions (Sallusto et al., 1999; Champagne et al., 2001; Woodland and Kohlmeier, 2009; Sallusto et al., 2010). Tem cells may remain blood associated, either circulating or contained within splenic red pulp or hepatic sinusoids. Upon re-stimulation, Tem cells undergo relatively little proliferation and secrete minimal IL-2 (Champagne et al., 2001; Sallusto et al., 2004, 2010). Short-term IFNγ responses to mycobacterial antigens measuring effector and Tem responses are utilized as a correlate to infection with tuberculosis tests for cattle and humans (e.g. IGRA). Additionally, assessment of long-term IFNγ production (i.e. as a surrogate to Tcm responses) may be used to detect past M. tuberculosis infection in humans with negative IGRA (Butera et al., 2009). Thus, measurement of effector and memory T responses may each provide diagnostic benefit.

Upon stimulation by mycobacterial antigens (e.g. rESAT-6:CFP10 or M. bovis PPD), bovine peripheral blood CD4, CD8 and γδ T cells from M. bovis-infected cattle proliferate and display an activated phenotype (i.e. ↑CD25, ↑CD26, ↑CD44) after 3–6 days in culture (Waters et al., 2003; Maue et al., 2005). Mycobacterial antigen-activated CD4 cells also decrease expression of CD62L and increase expression of CD45RO (associated with memory T cells) while decreasing expression of CD45R (associated with naïve T cells phenotype) (Maue et al., 2005). The variant splices A, B and C of CD45 receptor are not described for cattle (Bembridge et al., 1995). These findings demonstrate that cattle exhibit an expected T-cell effector phenotype upon antigen activation within short-term cultures. Additionally, with bovine tuberculosis vaccine efficacy studies, long-term (14 day cultures) T-cell responses (so-called cultured ELISPOT responses, Vordermeier et al., 2006) negatively correlate with mycobacterial burden (Waters et al., 2009) and tuberculosis-associated pathology and positively with vaccine-induced protection (Whelan et al., 2008; Vordermeier et al., 2009).
2009b). With this assay, T-cell lines are generated via stimulation of PBMC with mycobacterial antigens including Ag85A, TB10.4 and *M. bovis* PPD. Effector T-cell responses wane over time and memory cells are sustained via addition of IL-2 and fresh medium. After 13 days of culture, cells are washed, transferred to plates containing autologous APCs, cultured overnight and the ensuing response measured by IFNγ ELISPOT. Studies with samples from humans have demonstrated that the responding cells within these long-term cultures (up to 14 days) are mainly Tcms and that this response, in contrast to effector responses, correlates with better infection outcomes (Todryk et al., 2009). With cattle, BCG vaccination of neonatal calves induces significant protection against *M. bovis* challenge at 12 months but not at 24 months after vaccination. This loss of efficacy correlates with a significant reduction in the numbers of antigen-specific IFNγ-secreting cells within long-term PBMC cultures (Thom et al., 2012). Tcms are likely to contribute to the long-term cultured ELISPOT response to BCG vaccination by cattle, although a lack of an antibovine CCR7 antibody has hindered this characterization. In the assessment of the migration pattern of γδ T cells, Vrieling et al. (2012) recently demonstrated that an anti-human CCR7 antibody cross-reacts with bovine CCR7 molecules. Recent studies have demonstrated that Tcm cells, with a minor contribution by Tem cells, are the primary cell type responding in long-term cultured IFNγ ELISPOT responses to *M. bovis* infection in cattle (Maggioli et al., 2012). Data on the response to vaccination and subsequent challenge to access the correlation between Tcm and Tem responses to protection/pathology are still lacking. However, these data demonstrate the potential for defining a protective signature elicited by vaccination to prioritize vaccine candidates for efficacy testing within calves.

IL-17 and IL-22

There is considerable interest in the role of IL-17 producing cells in the immune response to persistent infection (Cooper, 2010). Significant IL-17 responses are elicited by *M. tuberculosis* infection of mice and humans (Khader and Cooper, 2008; Jurado et al., 2012) and *M. bovis* infection of cattle (Vordermeier et al., 2009b). Early expression of IL-17 is required for rapid accumulation of protective memory cells in tuberculosis infection of mice (Khader et al., 2007); however, the absence of IL-17 during *M. tuberculosis* infection only modestly alters the inflammatory response (Khader et al., 2005; Umemura et al., 2007). γδ and other non-CD4+ T cells are the primary producers of IL-17 during *M. tuberculosis* infection in mice. Early IL-17 produced by γδ T cells occurs prior to αβ T-cell priming, thus biasing the ensuing adaptive response (Lockhart et al., 2006). However, excessive IL-17 responses may be detrimental, resulting in a destructive influx of granulocytes as well as increased amounts of MIP2, TNF-α and IL-6 within affected lungs (Cruz et al., 2010). Thus, the timing and amount of IL-17 produced in response to tuberculosis is critical for the balance between control of the bacilli and detrimental inflammatory responses.

With cattle, stimulation of PBMCs with either *M. bovis* PPD or Ag85A elicits IL-17 mRNA expression in samples from *M. bovis*-infected or BCG plus viral-vectored Ag85A vaccinated cattle (Vordermeier et al., 2009b). With BCG/Ag85A-vaccinated cattle, IL-17 responses to Ag85A 10 weeks after vaccination and prior to challenge negatively correlate with tuberculosis-associated pathology at post mortem, indicating that vaccine-elicited IL-17 responses are protective (Vordermeier et al., 2009b). Likewise, Rizzi et al. (2012) recently demonstrated that IL-17 mRNA expression is increased in response to *M. bovis* PPD stimulation in cattle vaccinated with a BCG strain over-expressing Ag85B; and, post-vaccination/pre-challenge IL-17 responses negatively correlated with lesion severity after experimental infection (Rizzi et al., 2012). IL-17 responses to *M. bovis* PPD detected after challenge, however, do not correlate with protection as there is a ~20-fold increase in IL-17 gene expression detected in samples from non-vaccinated, vaccinated/protected and vaccinated/non-protected groups (Vordermeier et al., 2009b). Additionally, IL-17 mRNA expression (60 and 90 days after experimental infection) in response to *M. bovis* PPD correlates with the presence of gross tuberculous lesions, suggesting that IL-17 may prove useful as a...
biomarker of infection (Blanco et al., 2011). Using laser capture microdissection followed by qPCR, Aranday-Cortes et al. (2013) demonstrated increased IL-17A and IL-22 expression within tuberculous granulomas as compared to non-affected tissues from experimentally infected cattle. Expression was greatest in early lesions with decreasing expression in more advanced lesions, perhaps suggestive of down-regulation of IL-17A and IL-22 associated with expression of other immune-modulating cytokines. Further studies with bovine tuberculosis should prove useful for delineating potential roles for IL-17 and other Th17 cytokines. (et al., 2012) in protective and detrimental responses to M. bovis infection, although the role of this response (i.e. protective versus detrimental) is unclear.

γδ T cells

Bridging innate and adaptive immune functions, γδ T cells play a critical role in the early immune response to various infections of cattle including leptospirosis, anaplasmosis, paratuberculosis, theileriosis and tuberculosis (reviewed in Guzman et al., 2012). The frequency of γδ T cells within the peripheral lymphocyte pool in humans and mice is ~5–10% (Kabelitz, 2011) whereas γδ T cells constitute up to 60% of the circulating lymphocyte population in neonatal calves and ~25% in adult cattle (Hein and Mackay, 1991; Jutila et al., 2008). Populations of bovine γδ T cells are commonly divided based upon their expression of Workshop Cluster 1 (WC1) (Mackay et al., 1989; Clevers et al., 1990; Morrison and Davis, 1991; Machugh et al., 1997), a transmembrane glycoprotein and member of the scavenger receptor cysteine rich (SRC) superfamily, which includes CD163, CD5, CD6 and DMBT1 (Sarrias et al., 2004). The majority of bovine peripheral blood γδ T cells express WC1, and it is the WC1+ subpopulation that has been shown to respond to M. bovis infection, although recent studies indicate that WC1− γδ T cells are also responsive (McGill et al., 2014).

In cattle, γδ T cells undergo dynamic changes in distribution after M. bovis infection, with a marked decrease in the circulating pool shortly after infection (Pollock et al., 1996; Cassidy et al., 1998). The initial decline of peripheral blood γδ T cells has been attributed to trafficking to the site of infection as circumstantially evidenced by the accumulation of WC1+ γδ T cells within tuberculous lesions of cattle (Cassidy et al., 1998; Palmer et al., 2007). Following the initial decrease in circulation, percentages of WC1+ γδ T cells within the peripheral blood of M. bovis-infected cattle increase with a concomitant increase in CD25 expression, indicating an active response to infection (Pollock et al., 1996). Similarly, WC1+ γδ T cells are among the first cells to accumulate at the site of DTH responses following PPD injection of M. bovis-infected cattle (Doherty et al., 1996). And, as with mice (Dieli et al., 2003), bovine γδ T cells rapidly infiltrate lungs as well as lung- and head-associated lymphoid structures 1 week after intranasal BCG vaccination (Price et al., 2010). These findings demonstrate that bovine γδ T cells traffic to sites of mycobacterial infection, in vivo.

With in vitro studies, γδ T cells from M. bovis-infected cattle proliferate and produce IFNγ in response to stimulation with complex M. bovis antigens – including PPDs, whole cell sonicates and culture filtrate proteins (Rhodes et al., 2001; Smyth et al., 2001) – as well as specific proteins such as Ag85, MPB83, hsp 16.1 and ESAT-6/CFP10 (Rhodes et al., 2001; Maue et al., 2005). Human and murine γδ T cells proliferate and secrete cytokine in response to both protein and nonprotein phosphoantigens of M. tuberculosis (Haregewoin et al., 1989; Born et al., 1990; Morita et al., 1995; Fournie and Bonneville, 1996). Welsh et al. (2002) demonstrated that γδ T cells from M. bovis-infected cattle respond to pyrophosphates, including isopentyl pyrophosphate (IPP) and monomethyl phosphate. γδ T cells from M. bovis-infected cattle also respond to mycolylarabinogalactan peptidoglycan (a complex mycobacterial cell wall component, Vososky et al., 2004) as well as antigens within proteinase-K treated M. bovis whole cell sonicates (Welsh et al., 2002). Thus, it is evident that bovine γδ T cells respond to a variety of antigens upon M. bovis infection; however, the role of this response (i.e. protective versus detrimental) is unclear.

γδ T-cell deficient mice are able to temporarily control BCG (Ladel et al., 1995) and
Cytotoxic T lymphocytes (CTLs)

Cytolysis of mycobacteria-infected CTLs can result in direct killing or release of bacilli for eventual killing via other mechanisms (reviewed by Flynn and Chan, 2001). CD8+ T cells are the primary cell type performing CTL functions with mycobacterial infections; however, other lymphocyte populations such as NK cells, CD4+ T cells, and γδ T cells also have cytolytic capacity (Stenger et al., 1998; Canaday et al., 2001). Primary effector functions of CD8+ T cells are production of IFNγ necessary for macrophage activation and lysis of infected macrophages (Einarsdottir et al., 2009) and production of perforin and granulysin essential for CTL function via pore formation and antimicrobial functions, respectively. Additionally, IFNγ from CD4+ T cells is required for effective CD8+ T-cell responses (Green et al., 2013); thus, CTL functions are essential for the control of mycobacterial infections and CD4+ T-cell responses are supportive of this response.

CTLs are also implicated in the host response to bovine tuberculosis. Antigen-specific CD8 T cells cause release of viable M. bovis from infected bovine macrophages, indicating CTL activity (Liebana et al., 2000). Activated CD8+ T cells are detectable within the lymphocytic outer core of early-stage bovine tuberculous granulomas, indicating a potential role for these cells in the initial containment of the bacilli (Liebana et al., 2007). Bovine T cells also express a homologue of human granulysin, a potent antimicrobial protein stored in association with perforin in cytotoxic granules (Endsley et al., 2004). Additionally, antigenic stimulation of peripheral CD4+ T cells from BCG-vaccinated cattle results in enhanced anti-mycobacterial activity against BCG-infected macrophages linked with increased perforin and granulysin transcription (Endsley et al., 2007). Expression of the bovine granulysin gene can be induced in CD4+, CD8+ and γδ T cells resulting in antimycobacterial activity (Endsley et al., 2004, 2007). Granulysin and granzyme A mRNA are detectable within granulomas of M. bovis-infected cattle (Endsley et al., 2004; Aranday-Cortes et al., 2012). Granzymes are a group of serine proteases released by CD8+ T cells and NK cells in cytoplasmic granules along with perforin. Granulysin and perforin gene expression are also up-regulated in peripheral blood CD4+ and CD8+ T cells in both BCG- and M. bovis ΔRD1-vaccinated calves (protected) as compared with non-vaccinated (not protected) calves (Capinos Scherer et al., 2009). Thus CTLs are involved in the bovine immune response to M. bovis infection; however, further studies are required to determine their exact roles in protection and pathogenesis.
Polyfunctional T cells

Polyfunctional T cells simultaneously produce two or more cytokines in response to antigen, and higher frequencies of these cells are associated with control of chronic infections such as HIV, hepatitis C, leishmaniasis, malaria and tuberculosis (reviewed in Wilkinson and Wilkinson, 2010; Caccamo and Dieli, 2012). The majority of studies with human tuberculosis indicate that polyfunctional T-cell responses are associated with active disease (Sutherland et al., 2009; Wilkinson and Wilkinson, 2010); however, others indicate a protective role (Geluk et al., 2012). Few studies have been performed on the evaluation of polyfunctional T cells in cattle, largely due to the lack of necessary reagents. Whelan et al. (2011b) recently described the development of an assay to detect polyfunctional CD4 T cells in M. bovis-infected (natural infection) cattle. Bovine polyfunctional CD4 T cells exhibited a characteristic CD44hi CD62Llo CD45RO+ TEM phenotype. Interestingly this study, as well as recent as yet unpublished results, suggests that polyfunctional CD4+ T cells are associated with pathology rather than protection (Whelan et al., 2011b; Whelan, Villarreal-Ramos and Vordermeier, unpublished data). That a more diverse cytokine profile can be reflective of more severe disease has also recently been highlighted by the observation that cattle producing both IL-2 and IFNγ (measured by ELISA after in vitro stimulation) are more likely to present with visible pathology at post mortem than those that produce IFNγ only (Rhodes et al., 2014). Further studies are warranted to determine the exact role of polyfunctional T cells in the response to M. bovis infection as well as vaccination.

B Cells and Antibody Responses

Role for B cells?

Specific roles for B cells in the immune response to tuberculosis are generally considered supportive, rather than essential (reviewed by Maglione and Chan, 2009). Functions attributed to B cells in the response to tuberculosis include antigen presentation, APC regulation via Fc receptors, immune modulatory actions of immune complexes and antibody-dependent cytotoxicity. B cell aggregates are consistently detected in association with tuberculous lesions in mice, cattle, non-human primates, humans and other host species infected with M. tuberculosis-complex organisms. These tertiary structures contain naïve, memory and plasma cells as well as intermixed CD4+ and CD8+ T cells, follicular dendritic cells and mycobacteria-laden APCs (Ulrichs et al., 2004). Using immunohistochemistry, Aranday-Cortes et al. (2013) demonstrated the presence of B cells (CD79a+ cells) within granulomas of tuberculous cattle. In that study, early granulomas (Stages I and II) displayed scattered B cells, whereas more advanced granulomas (Stages III and IV) showed satellite nests of CD79a+ cells located peripherally and outside of the fibrous capsule. In mice, formation of B cell follicles within infected lung tissues is dependent upon IL-23 and CXCL13, and CXCL13 production is dependent upon IL-17A and IL-22 in this response (Khader et al., 2011). The presence of ectopic germinal centres indicates that the M. tuberculosis complex – and the ensuing inflammation – induces active B cell clusters that modulate the host response. Thus, these follicles provide at least a partial framework for coordinated immune control of mycobacterial growth in the affected tissues (Ulrichs et al., 2004).

Tuberculin boost

Several antibody-based tests have recently emerged for use in cattle, captive cervids, several wildlife reservoirs of M. bovis and various zoo species (most notably elephants). Intradermal tuberculin administration is known to significantly boost antibody responses in tuberculous cattle and cervids, but not in non-infected animals (Lyashchenko et al., 2004; Harrington et al., 2008). This phenomenon can be observed from 1 to 2 weeks to several months after tuberculin injection (Palmer et al., 2006; Chambers et al., 2009). The absence of seroconversion in non-infected animals and the short-lived antibody kinetics with features of an anamnestic response strongly suggest
that the tuberculin-boosted antibody response is due to memory B cells originally primed by mycobacterial infection that can be quickly activated upon re-stimulation by tuberculin administration.

Correlations to pathology

Cellular immune responses elicited by mycobacterial infections of cattle generally correlate with infection but not necessarily with the level of pathology (Waters et al., 2010). Inoculation of cattle with M. tuberculosis-complex strains that are attenuated in cattle (e.g. M. tuberculosis H37Rv or M. bovis Ravenel) results in relatively robust cell-mediated immune responses and persistent colonization with minimal to no lesions. With M. kansasii inoculation, cell-mediated immune responses are elicited without detection of the organism or associated lesions. As expected, inoculation of cattle with virulent M. bovis (field strains such as 95-1315 or A2122/97) results in robust cell-mediated immune responses, persistent colonization and associated tuberculous lesions. Similar results were observed following the intratracheal inoculation of cattle with a virulent M. bovis strain (WAg201) and three attenuated M. bovis strains. One attenuated strain had a mutation in the inhA gene (WAg405, daughter strain of WAg201), a second strain (ATCC 35721) with a mutation in the principal sigma factor, rpoV gene and BCG (Wedlock et al., 1999). Extensive macroscopic lesions were found only in cattle inoculated with the virulent strain, while strong antigen-specific IFNγ and IL-2 were induced by all M. bovis strains. Interestingly, the virulent strain and two of the attenuated strains (WAg405 and ATCC 35721) elicited strong DTH responses to bovine PPD in the skin test in comparison to BCG and this correlated with rapid in vitro proliferation in unstimulated bovine alveolar macrophages and proinflammatory cytokine gene expression. Thus, regardless of the pathological and mycobacterial burden outcome, cell-mediated immune responses are elicited. In contrast, antibody responses generally correlate with levels of pathology associated with mycobacterial infections (Wedlock et al., 1999; Waters et al., 2010). For instance, mycobacterial-specific antibody is detectable relatively early after M. tuberculosis challenge of cattle, yet these responses wane over time, and this is likely to be coincident with the reduction of M. tuberculosis colonization. In contrast, with virulent M. bovis infection that leads to persistent infection and significant pathology, antibody responses persist, probably due to increasing antigen burden. With less virulent mycobacteria (e.g. M. kansasii), antibody responses are elicited and then wane, likely to be coincident with clearance of the pathogen. Regardless of disease expression, mycobacteria-specific antibody responses may be boosted by re-exposure to mycobacterial antigens (e.g. PPD for skin test) or other live mycobacteria, thereby potentially confounding interpretation of serologic tests.

Transmission of Mycobacterium bovis from Cattle to Cattle

In most countries with active control programmes, affected cattle herds contain low numbers of infected animals, suggestive of low rates of cattle-to-cattle transmission (Palmer and Waters, 2006). Entry of M. bovis into cattle herds may occur via cattle-to-cattle transmission through purchase of infected animals or contiguous spread (Goodchild and Clifton-Hadley, 2001), from wildlife reservoirs (de Lisle et al., 2002), or environmental exposure (Phillips et al., 2003). Transmission is generally by direct contact with tuberculosis-infected animals as the organism may occur in exhaled droplets, saliva, faeces, milk, urine, vaginal discharges, semen or exudate from tuberculous lesions (e.g. lymph nodes with draining tracts that communicate to the exterior). With M. tuberculosis, for example, airborne bacilli can be generated and carried in droplets ranging in size between 0.5 and 2 μm. Droplets of this size are significant in that they are readily dispersed and can remain suspended in air where they are dispersed (Segal-Maurer and Kalkut, 1994). To achieve airborne transmission, M. bovis must remain viable inside droplet nuclei. Gannon et al. (2007) found that 94%
viability was retained 10 min post-aerosolization, with a half-life of 1.5 h. Infection may also result from ingestion of infected feeds. Housing (e.g. cattle sheds, milking parlours) and crowding increases the contact of naïve animals with infected animals, enhancing the spread of this disease. Lesion distribution in tuberculous farmed cattle indicates aerosol infection, often as a result of exposure to small numbers of viable bacilli (Dean et al., 2005). In comparison, significantly larger numbers of bacilli are needed to initiate oral infection (Pollock et al., 2006).

M. bovis is also transmitted by indirect contact through contaminated feed and water, equipment or anything that mechanically transfers the organism between locations. Movement of infected animals resulting from transfer of ownership, sharing of breeding animals and fence-line contact with other herds is another common means of transferring the disease between herds and regions (Probst et al., 2010). This concept is also supported by Welby et al. (2012) where within-herd spread was a factor in herd level breakdowns, with trade in undetected infected animals posing a significant risk. Barlow et al. (1998) indicated that cattle movement is the likely cause of transmission in areas where *M. bovis*-infected reservoirs are absent. Also, cattle movements were more likely to be responsible for local breakdowns in isolated areas, rather than spread through wildlife (Bourne, 2007). Studies revealing social interactions also provide insight into the potential for cattle-to-cattle transmission. Sauter and Morris (1995) studying New Zealand cattle identified the herd dominance hierarchy and found that skin-test reactors were likely to be found in the top 50% within that hierarchy. The introduction and use of proximity data logging collars has improved social network tracing (Böhm et al., 2009), with up to 26 direct cattle-to-cattle interactions found per day. Cattle prominent in the social hierarchy are also likely to be more inquisitive and are therefore more likely to acquire infection from infectious herd cohorts (Böhm et al., 2009). Movement of cattle from TB endemic areas was seen to be a greater risk for TB breakdown compared to other variables (Gilbert et al., 2005). Specifically, Gopal et al. (2006) investigated herd breakdowns in north-east England and tracked 17 cases where skin-test reactors were traced to herds with the same genotype. Global trade agreements are increasingly being implemented to promote international trade of livestock, thereby increasing risks for inter-regional spread and distribution of TB over great distances.

A number of studies have examined nasal excretion as a source for transmission. Romero Tejeda et al. (2006) tested nasal exudates from Mexican cattle using PCR and found excretion from infected cattle. Menzies and Neill (2000) estimated that up to 20% of infected cattle can excrete *M. bovis*. McCorry et al. (2005) monitored nasal excretions from cattle infected under controlled conditions and identified two distinct periods of excretion, less than 30 days post-infection and greater than 80 days post-infection. However, transmission from infected cattle to naïve animals held under experimental conditions has not been a common finding; perhaps this was due to stringent airflow management for biological containment. Segal-Maurer and Kalkut (1994) reported that a single change of air reduced airborne *M. tuberculosis* by 67%. More recently, studies using an experimental model of bovine tuberculosis have demonstrated the complexity and unpredictability of cattle-to-cattle transmission (Khatri et al., 2012). Sentinel (non-infected) cattle were housed with *M. bovis*-infected cattle (naturally infected and from farms in England or Wales) in ten pens with six sentinels and four donors per pen. After 12 months of direct contact with donors, only 8 of 60 sentinels became infected, demonstrating a relatively low rate of transmission (13.3%) even under conditions of close and continued direct contact. Insights into disease transmission were obtained using molecular typing of *M. bovis* isolates obtained from donor and sentinel animals. Several patterns emerged. In two pens, transmission was likely to be due to an animal with extensive lesions, highlighting the highly infectious nature of animals with advanced disease. In another pen, the only donor with a spoligotype matching one of its infected receptor pen mates had a low pathology score and only a single visible lesion in a mediastinal lymph node, demonstrating that an animal with early-stage infection, and without visible lung pathology, can also be
infectious. In two other pens, the spoligotype pattern of isolates from the receptor cattle did not match spoligotype patterns from any of the lesions from donor animals, indicating either indirect contact via shared airspace (i.e. pen to pen transmission) or through transfer of *M. bovis* by husbandry procedures. Interestingly, in one of these two pens, the spoligotype of the *M. bovis* strain from one of the sentinel animals did not match a spoligotype from any of the donor animals in the study, potentially suggesting transmission from a donor with no visible lesions. This study clearly demonstrates the difficulties in determining the exact nature of transmission events with bovine tuberculosis herd breakdown events. Use of whole-genome sequencing may prove useful for the unravelling of these complex and seemingly unpredictable transmission scenarios (Biek et al., 2012; Godfray et al., 2013). Additionally, after an animal becomes infected, the period during which it may become infectious will vary (Goodchild and Clifton-Hadley, 2001) as well as the time period that it is detectable as ‘infected’ – diagnostically. Francis (1946) estimated this period to be between 30 and 50 days although Barlow et al. (1998) suggested that 6–20 months is more likely, especially when cattle are tested on a regular basis.

Transmission of *Mycobacterium bovis* from Wildlife to Cattle

The eradication of bovine TB from cattle herds in many countries has been frustrated by the existence of wildlife reservoirs of infection, proving strong evidence of transmission of *M. bovis* from wildlife to cattle. *M. bovis* has a wide host range infecting many wildlife species, but only a limited number including brushtail possums in New Zealand; badgers in the UK and Ireland; white-tailed deer in Michigan, USA; elk and bison in Canada; and wild boar in Spain and Portugal serve as maintenance hosts of *M. bovis* infection (de Lisle et al., 2002). Since the 1970s there has been increasing evidence that these maintenance hosts serve as an important source of infection for cattle, supported by *M. bovis* typing studies identifying common strains in wildlife and cattle in the same areas (Collins, 2011).

Studies in New Zealand have shown that a reduction of possum numbers by culling in a locality is followed by a reduction in the annual incidence of TB in cattle (Tweedle and Livingstone, 1994; Caley et al., 1999), and infection in livestock increased if infected possums returned (Ryan et al., 2006). A characteristic of wildlife as a source of infection was the extreme rarity of severely infected cattle and most herds had only one or two infected animals (Collins, 2011). Large-scale badger culling trials in the UK and Republic of Ireland have provided convincing evidence of transfer of infection from badgers to cattle. In the Randomized Badger Culling Trial (RBCT) undertaken in the UK, proactive culling resulted in a reduction in bovine TB incidence in cattle herds inside culled areas, but a temporary increase in adjacent areas. Reactive culling in response to herd breakdowns was associated with an increase of bovine TB in cattle, possibly as a result of social perturbations in badger social groups (reviewed by Wilson et al., 2011). Thus, non-selective culling may have positive and negative outcomes. Based on the results from the RBCT, Jenkins et al. (2008) suggested that the contribution of badgers to infection in cattle accounted for 50% in the experimental areas. Studies in the Republic of Ireland indicated that proactive culling had beneficial effects on the bovine TB incidence in cattle and there was no evidence that small-scale culling led to an increase in herd breakdowns (Griffin et al., 2005).

A reservoir of *M. bovis* infection in white-tailed deer in five counties in north-east Michigan, USA, has been a source of infection for cattle herds in this region. In a case-control study of farm risk factors for TB, Kaneene et al. (2002) found management practices to exclude deer from cattle areas were the most significant factors to reduce farm risk of TB. In Manitoba, Canada, an elk herd was implicated in an outbreak of *M. bovis* in 11 cattle herds surrounding Riding Mountain National Park, where co-mingling elk and cattle were feeding on the same hay bales and a unique strain of *M. bovis* was identified (Miller and Sweeney et al., 2013). In the regions of southern
Spain with highest cattle TB prevalence, wildlife species such as European wild boar and red deer showed a high prevalence of TB, which suggested that the disease was shared between domestic and wild hosts (Naranjo et al., 2008). In southern and eastern Africa, only four species are suspected to play a role as a maintenance host: buffalo, lechwe, and possibly greater kudu and common warthog. However, there has been no case of bovine spillover from wildlife to cattle confirmed, although indirect contacts between cattle and buffalo do occur at the periphery of several large conservation areas in southern Africa (de Garine-Wichatitsky et al., 2013).

Mechanisms to explain routes of transmission of *M. bovis* from wildlife to cattle include both direct and indirect contact. Direct aerosol spread between possums and cattle has been considered the principal route when cattle investigated terminally ill possums, with cattle attracted by the unusual behaviour of ill possums that do not show the avoidance behaviour of healthy animals (Sauter and Morris, 1995). In addition, terminally ill possums often have open draining lesions containing large numbers of organisms. In contrast, indirect contact between badgers and cattle has been considered the principal route for transmission of infection to cattle. Use of automated proximity loggers on badgers and cattle and at badger latrines located on pasture showed that direct contacts between badgers and cattle were very rare, while indirect contacts, visits to badger latrines by badgers and cattle were more common (Drewe et al., 2013). The detection of viable *M. bovis* at badger setts and latrines is strongly linked to the frequency of *M. bovis* excretion by infected badgers (Courtenay et al., 2006). Badger visits to farm buildings may also be important and badgers have been recorded defaecating and urinating in buildings, sometimes directly on to feed and regularly came within 2 m of housed cattle (Wilson et al., 2011). The transmission of infection between wildlife and cattle in Spain was considered most likely from indirect contact based on a study where camera traps were placed around at water spots, food bait stations and pasture on an extensive cattle farm also used for game hunting. Direct interactions between wildlife (deer and wild boar) and cattle were rare, while indirect interactions of wildlife followed by livestock were most frequent at water holes, suggesting water points as a hotspot for indirect interactions (Kukielka et al., 2013). Indirect contacts between white-tailed deer and cattle were considered the major route of transmission between the species and it has been demonstrated that experimentally infected deer transmitted *M. bovis* to cattle through sharing of feed in the absence of direct contact between the two groups of animals (Palmer et al., 2004).

Special Topics

Mycobacterium bovis-infected cattle with non-visible lesions: latency?

In contrast to *M. tuberculosis* infection in humans, the degree of latency resulting from *M. bovis* infection in cattle is unknown and controversial (Cassidy 2006; Alvarez et al., 2009). Most consider the disease as slowly progressive in cattle; however, given the high degree of genetic homology (~99.95%) between *M. bovis* and *M. tuberculosis* it is unclear why latency is a prominent disease stage in humans and has not been clearly defined in cattle. The difference may be host related as reactivation of latent *M. bovis* infection in humans has been demonstrated (Larsen et al., 2008) and *M. bovis* infection of Eurasian badgers results primarily in a prolonged non-clinical course of disease with minimal inflammation, suggestive of a latent state (Corner et al., 2011). Thus, there is potential for various disease outcomes with *M. bovis* infection that is host contingent.

Dormancy survival regulon (DosR) and enduring hypoxic response (EHR) genes are, in part, responsible for encoding dormancy related functions of *M. tuberculosis* (Lin and Ottenhoff, 2008), of which, many of these genes are conserved between *M. tuberculosis* and *M. bovis* (Alvarez et al., 2009). Responses to DosR and EHR antigens are detectable, albeit at low frequency (particularly with DosR antigens), in *M. bovis*-infected cattle (Jones et al., 2011). IL-1β responses to the EHR antigen Rv0188 are associated with responses
by infected animals exhibiting low or no pathology whereas responses to other EHR antigens are not correlated with disease status (Jones et al., 2011). While DosR and EHR antigens were identified with in vitro studies culturing M. tuberculosis under conditions mimicking latency (i.e. hypoxia and low levels of NO), responses to these antigens are not restricted to latent versus active M. tuberculosis infection of humans (Hinks et al., 2009; Schuck et al., 2009; Gideon et al., 2010). Thus, while M. bovis infection of cattle elicits responses to dormancy-associated antigens, it is still uncertain whether these responses are indicative of a latent stage of infection in cattle.

Latency is clinically defined as persistence of viable mycobacteria within a tuberculous lesion in a non-symptomatic host. On rare occasions, M. bovis is detected by culture or molecular techniques in tissues from animals without visible tuberculous lesions; however, it is uncertain if infected animals with no visible lesions would eventually develop progressive disease analogous to reactivation in human tuberculosis. Similarly, experimental infection of cattle with laboratory-adapted strains (i.e. M. tuberculosis H37Rv, M. bovis AN5 or M. bovis Ravenel) results in colonization with minimal to no lesions 4–5 months after challenge, despite vigorous cell-mediated immune responses (Whelan et al., 2010; Vordermeier, unpublished observations; Waters et al., unpublished observations). Using the clinical definition of latency, these animals would be classified as having latent infection; although, as with naturally infected cattle with no visible lesions, it is unknown if active disease would result spontaneously given time or be induced via immune suppression.

It has also been suggested that skin-test or IGRA-positive animals with no visible lesions upon post-mortem inspection may have latent infection (Alvarez et al., 2009). Recent studies have clearly demonstrated that IGRA-positive, skin-test negative animals are at increased risk to convert to skin-test positive status over a period of time and present with confirmed M. bovis infection upon post-mortem inspection (Cassidy, 2006). With this scenario, animals that are initially IGRA positive, skin-test negative and later confirmed as infected, could be classified as: (i) early-infected with progressive disease; or (ii) latently infected with the potential for subsequent progression to active disease. While IGRAs are a good correlate of infection (median test sensitivity, 87.6%; Schiller et al., 2010), the magnitude of the response is not indicative of the severity of lesions or duration of infection in cattle (Waters et al., 2012). Thus, animals that are potentially latently infected may have a similar magnitude of response as compared to animals with visible lesions (Waters et al., 2010). The possibility of latent M. bovis infection in cattle has a profound consequence for both evaluation and use of immune-based diagnostic tests, particularly given the pitfalls of current gold-standard tests. Even with thorough post-mortem examinations, extensive culture of tissues including lymph nodes/lungs with no visible lesions and histopathological assessment including M. tuberculosis-complex specific PCR, our ability to detect all infected animals is not 100%. This is likely to be due to the paucibacillary nature of the disease in certain animals, inability to sample all tissues and shortcomings of mycobacterial culture (e.g. harsh decontamination during processing). Fortunately, with more aggressive eradication/control programmes, slaughter surveillance and ante-mortem testing is used to identify tuberculosis-affected herds, of which aggressive measures such as whole-herd depopulation (stamping out) or stringent interpretation of ante-mortem tests may be applied to ensure removal of all infected animals, including those which may be ‘latently’ infected.

Host genetics: correlations to resistance

Patterns of infection at the population scale are determined largely by relative susceptibility. Animal-level risk factors separate broadly into genetic and non-genetic (environmental) risk factors that act jointly to influence susceptibility. It is biologically untenable that genetic variation in both host and pathogen does not play a role in the outcome of exposure to tuberculous bacteria. There is now compelling evidence from studies in humans,
mice, deer and rabbits that the outcome of infection with *M. tuberculosis*-complex bacteria has a significant genetic component (Allen et al., 2010). Species-level differences in susceptibility to bovine tuberculosis have been detected in cattle (Ameni et al., 2007); *Bos indicus* animals are more resistant than *B. taurus*. Recent developments suggest that it may be possible to increase the resistance to bovine tuberculosis by genetic selection.

In population-based studies, the proportion of the variance of any trait contributed by host genetic variation (heritability, h^2) can be estimated. Significant heritability is one of the key factors determining the potential success of breeding schemes in livestock production. Recent quantitative genetics studies have demonstrated significant heritability (21%) of susceptibility to bovine tuberculosis in Holstein cattle in Ireland (Bermingham et al., 2014) and in the UK (Brotherstone et al., 2010; Bermingham et al., 2011). For comparison, heritability for milk yield is estimated at around 28%, with substantial genetic gain achieved via selective breeding. Furthermore, field studies are likely to underestimate true heritability for infectious disease predisposition, due to unequal exposure to the pathogen and incomplete sensitivity of the diagnostic tests (Bishop and Woolliams, 2010). One of the significant read-outs of these large-scale quantitative genetics studies is that it should be possible to rank the bovine tuberculosis risk of individual sires (sire relative risk), based on the bovine tuberculosis status that follows in their progeny. Sire relative risk rankings for Holstein–Friesians in Ireland and the UK are currently being developed and are likely to overlap significantly. A recent Irish study also suggests that selective breeding towards bovine tuberculosis resistance should not have a negative impact on other desirable production traits (Bermingham et al., 2014).

Molecular genetics seeks to identify the individual genetic variants that explain the heritability of observed resistance/susceptibility phenotypes. Genome-Wide Association Studies (GWAS) have been used in the past in human genetics to find variation underpinning multiple traits, by examining genetic differences between panels of individuals with a phenotype of interest (cases) and individuals without the phenotype (controls). Can cattle exposed to tuberculosis be assembled into such case and control panels? Tuberculosis in cattle, as in all animal models and human studies, presents as a spectrum of infection outcomes or phenotypes (Barry et al., 2009; Young et al., 2009), a departure from the classical view that tuberculosis infection has a binary outcome. Extrapolation of this spectrum to cattle can clearly define animals as being susceptible (cases) or resistant (controls).

Having been able to classify cattle exposed to tuberculosis as cases or controls, we then must be able to index the differing genetic variation that underpins their phenotypic outcome. Due to the stunning achievements of the bovine genome sequencing project (Bovine Genome Sequencing and Analysis Consortium, 2009; Larkin, 2011) and associated genetic marker discovery (Bovine HapMap Consortium, 2009), cattle GWAS can now index variation at >700,000 genetic markers (SNPs) from across the whole 3 bn letter bovine genome. This development allows for an approach that does not require any *a priori* knowledge of the exact genes/loci causing particular phenotypes, thereby potentially identifying novel networks of genes involved in tuberculosis resistance, and pathways crucial to the host–pathogen interaction. The first of these bovine GWAS has just reported preliminary findings (BBSRC, 2011; Finlay et al., 2012; Bermingham et al., 2014). The study identified a number of genetic markers associated with the risk of acquiring bovine TB if exposed; some were associated with increased risk and others with reduced risk. Subject to further research and validation, these provisional results suggest that it might be possible to selectively breed cows that are more resistant to bovine tuberculosis.

Additionally, recent advances are taking the field of genetic epidemiology beyond the concept of associating individual genetic polymorphisms with phenotypes. Novel quantitative methodologies can now be employed to associate whole-genome variation with disease phenotypes (Daetwyler et al., 2008); such ‘genomic selection’ can then be used to predict the phenotypic outcome for any animal based on just its whole-genome genotype without the need to undertake lengthy and
costly trait recording or phenotyping exercises. This concept is an extension of genome-wide or genomic selection using SNP arrays (Meeuwissen et al., 2001), which is now commonplace in most major advanced dairy cattle breeding programmes.

Acknowledgements/Disclaimers

USDA is an equal opportunity provider and employer. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Martin Vordermeier was funded by the Department for Environment, Food and Rural Affairs UK (Defra) and the Wellcome Trust.

This project was supported, in part, by Agriculture and Food Research Initiative Competitive Grant no. 2011-67015-30736 from the USDA National Institute of Food and Agriculture.

References

Immunopathogenesis of *Mycobacterium bovis* Infection of Cattle

Denis, M. and Buddle, B.M. (2008) Bovine dendritic cells are more permissive for *Mycobacterium bovis* replication than macrophages, but release more IL-12 and induce better immune T-cell proliferation. *Immunology and Cell Biology* 86, 185–191.

bacterium bovis infection in cattle results in pathology indistinguishable from that of high-dose infec-

and Vordermeier, H.M. (2011) Immune responses to the enduring hypoxic response antigen Rv0188
are preferentially detected in Mycobacterium bovis infected cattle with low pathology. *PLoS One* 6(6),
e21371.

Junqueira-Kipnis, A.P., Kipnis, A., Jamieson, A., Juarrero, M.G., Diefenbach, A., Raulet, D.H., Turner, J.
and Orme, I.M. (2003) NK cells respond to pulmonary infection with *Mycobacterium tuberculosis*,
but play a minimal role in protection. *Journal of Immunology* 171(11), 6039–6045.

Jurado, J.O., Pasquinelli, V., Alvarez, I.B., Peña, D., Rovetta, A.I., Tateosian, N.L., Romeo, H.E., Musella,
R.M., Palermo, D., Chuluyán, H.E. and García, V.E. (2012) IL-17 and IFN-γ expression in lymphocytes
from patients with active tuberculosis correlates with the severity of the disease. *Journal of Leukocyte
Biology* 91(6), 991–1002.

Khader, S.A., Guglani, L., Rangel-Moreno, J., Gopal, R., Junecko, B.A., Fountain, J.J., Martino, C., Pearl, J.E.,
required for long-term control of *Mycobacterium tuberculosis* and B cell follicle formation in the infected
lung. *Journal of Immunology* 187(10), 5402–5547.

Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by

cells in cattle blood. *Developmental and Comparative Immunology* 28, 941–948.

of alpha/beta and gamma/delta T lymphocytes to immunity against *Mycobacterium bovis* bacillus Calmette

Laennec, R.T.H. (1837) *Treaty Mediate Auscultation and Diseases of the Lungs and Heart*. Adolphe
Whalen & Co Brussels. Available at: https://archive.org/details/traitedelasculta02un (accessed 12
November 2013).

