
Description of the three main components of the Sirex noctilio invasion 
model

Model component 1: simulating new entries

We fi rst built a model component for generating new entries of S. noctilio at US and Canadian 
ports. Prior to its detection in the region, S. noctilio, like many other forest insect pests, was 
regularly intercepted at ports of entry in commodities shipped with solid-wood packing 
materials or in raw wood products (Hoebeke et al., 2005). In turn, the purpose of this model 
component was to account for the possibility of human-mediated introductions of S. noctilio 
to locations in North America that were geographically distinct at the time from the existing 
infested range, yet connected to foreign locations where the pest occurs (and perhaps some 
of the North American locations) through commodity trade. In subsequent model time 
steps, these new entries have the opportunity to expand and spread as if they were 
established populations in the broader landscape.

We constructed the entry component in two steps. First, we estimated the ‘total’ entry 
potential of S. noctilio into eastern North America via marine ports. We focused on marine 
ports because the US Department of Agriculture (USDA) Animal and Plant Health Inspection 
Service (APHIS) PestID database, which documents pest species interceptions at US ports of 
entry (Haack, 2006), had only reported interceptions of the pest on marine cargo shipments, 
and not on cargo imported by air or via land border crossings. Th e total entry potential 
represents the annual probability that S. noctilio will be successfully introduced at one or 
more marine ports of entry in the study region. We estimated this probability by defi ning a 
function, F(t), to describe the yearly fl ow of marine imports to the USA and Canada through 
time. To construct F(t), we added data showing the total value of imports (in millions of 
dollars) to the USA each year (US Census Bureau, 2013) to similar annual import data from 
Statistics Canada (Statistics Canada, 2012). At the time of our analysis (early 2008), import 
data were available for both countries through 2007. For simplicity, we assumed that the 
historical volumes of cargo shipments coming specifi cally from countries with S. noctilio 
were correlated with the historical trends observed for all marine imports to the USA and 
Canada.

We next rescaled F(t) to a probability density function, p(t), representing the total 
probability of successful S. noctilio entry into North America. We did this by fi rst defi ning 
two points along the F(t) curve: (i) an initial time step, t0; and (ii) the date of the species’ 
fi rst successful introduction, Tentry (see Fig. S13.1). Th e area under the curve between t0 and 
Tentry can be set equal to 1, such that:

   (S13.1)

Subsequently, if t is represented as a discrete annual time step, the value of p(t) can be found 
by solving Eqn S13.1 numerically:

  (S13.2)

We set t0 to 1971; this was the earliest date for which summary import data were available 
for both the USA and Canada. We set Tentry to 1999, thereby assuming a 5-year lag between 
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the entry of S. noctilio into North America and its fi rst detection in 2004 (Fig. S13.1). As 
with many other invasive species, the exact date of the species’ entry is unknown, but there 
is typically a lag of several years between initial arrival of an invader and its detection 
(Crooks, 2005). We believed an assumption of a 5-year lag was reasonable, but recognize 
that choosing a diff erent year for Tentry would have aff ected the p(t) values. Notably, Eqn 
S13.2 can be used to estimate p(t) for values of t that fall outside the bounds of t0 and Tentry. 
In this case, it allowed us to estimate p(t) for future years (i.e. after Tentry = 1999). However, 
it also required the simplifying assumption that F(t) in any future year would remain 
proportional to the sum of F(t) values between t0 and Tentry. We were comfortable with this 
assumption given our relatively short time horizon, but acknowledge that this particular 
solution may be inappropriate for longer time horizons of several decades or more, when 
individual F(t) values could eventually be several times greater than this sum.

Fig. S13.1. Graph of p(t), as calculated from the total value of imports to the USA each year (see 
Eqns S13.1 and S13.2). The time steps t0 and Tentry represent, respectively, the fi rst year in which 
summary import data were available and the year when S. noctilio was assumed to have arrived in 
the study region (i.e. eastern North America). The red bar indicates the 30-year time horizon, T, for 
the invasion model.

We used Eqn S13.2 as described to estimate p(t) annually through 2006. Th at year, the USA 
and Canada fully implemented new phytosanitary standards that had been developed and 
adopted by the International Plant Protection Convention. Denoted as ISPM 15, these 
standards for the treatment and handling of all raw wood and wood packing materials were 
intended to substantially reduce accidental introductions of alien forest pests via imported 
cargo. We assumed a 50% immediate impact of the new standards on the probability of entry 
in 2007, supposing that port authorities would increase inspection eff orts in order to enforce 
the new phytosanitary standards. Th ese additional inspections would likely increase the 
probability of early detection and containment of infested cargoes and therefore reduce the 
probability of new S. noctilio establishments. However, we also assumed the new standards 
would have a diminishing impact through time because growing import volumes would 
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begin to outstrip enforcement capacity to some degree. Under this latter assumption, p(t) 
increases approximately 7% per year after 2007 (see Fig. S13.1). Admittedly, this somewhat 
pessimistic scenario was conjectural, especially given the impact of the Global Financial 
Crisis on imports to the USA and Canada in 2008–2009. Nonetheless, more recently available 
data have shown that US import volumes had already exceeded their pre-Crisis levels by 
2010, providing support for our assumption (Williams and Donnelly, 2012).

Table S13.1. Commodity categories with the potential to harbour S. noctilio either directly (i.e. in raw 
wood products) or indirectly (i.e. in solid-wood packing materials). Individual commodities were 
identifi ed by examining historical interception records in the USDA APHIS PestID database. These 
were then matched to categories in the Lock Performance Monitoring System (PMS), the commodity 
coding system used by the US Army Corps of Engineers for foreign waterborne commerce statistics.

Commodity category PMS commodity code

Forest Products, Lumber, Logs, Woodchips 41

Sand, Gravel, Stone, Rock, Limestone, Soil, Dredged Material 43

Paper and Allied Products 51

Building Cement and Concrete, Lime, Glass 52

Primary Iron and Steel Products (Ingots, Bars, Rods, etc.) 53

Primary Non-Ferrous Metal Products, Fabricated Metal Products 54

Primary Wood Products, Veneer, Plywood 55

All Manufactured Equipment, Machinery and Products 70

After p(t) was estimated out to our model time horizon (i.e. 2036), the next step was to 
apportion the yearly value of p(t), the total probability of successful S. noctilio entry into the 
study region, among 148 marine ports in the eastern USA and Canada. Th ese ports were 
identifi ed as principal ports due to their comparatively high shipping volumes (see below). 
For each time step t, we assumed the sum of Wx(t), a vector of the local probabilities of S. 
noctilio entry at each individual port x, was equal to p(t). To fi nd values of Wx(t) in the USA, 
we used the US Army Corps of Engineers database of foreign cargo shipments to US marine 
ports (US Army Corps of Engineers Navigation Data Center, 2013). At the time of our 
analysis, the database reported tonnages of marine imports received between 1997 and 
2005, by commodity category and origin country. For Canadian marine ports, we used 
Statistics Canada ‘Shipping in Canada’ 2000–2004 reports (Statistics Canada, 2003a,b, 
2004, 2005, 2007). Th e Canadian data provided coarser estimates for major ports only, and 
over fi ve instead of eight years. Given the available data, we adopted the simplifying 
assumption that Wx(t) follows a linear trend with respect to time. For each port, we determined 
total annual volumes of commodities that could be infested by S. noctilio (Table S13.1) and 
were imported from countries where it was previously established (Table S13.2). Both the 
commodity and country lists were assembled by a working group organized by the USDA 
Forest Service’s Forest Health Technology Enterprise Team (FHTET) to develop risk map 
products for S. noctilio (USDA Forest Service Forest Health Technology Enterprise Team, 
2013).



Table S13.2. List of countries (other than the USA and Canada) where S. noctilio is either native or 
established as an alien species.

Albania Croatia Ireland Poland Spain

Argentina Denmark Italy Portugal Sweden

Australia Estonia Latvia Romania Turkey

Belgium Finland Lithuania Russia Ukraine

Brazil France Netherlands Serbia United Kingdom

Bulgaria Germany New Zealand Slovenia Uruguay

Chile Greece Norway South Africa

According to the available marine import data, the volumes of S. noctilio-associated 
commodities received at individual US and Canadian ports varied by as much as seven orders 
of magnitude. We believed this to be an unrealistic characterization of the variability 
between ports with respect to the local entry probability; we reviewed historical interceptions 
of S. noctilio, other siricids and related insects in the USDA APHIS PestID database and found 
a much smaller discrepancy (about three orders of magnitude) between the interception 
frequencies at relatively low-volume ports versus the highest-volume ports. Th erefore, we 
used the following transformation to convert the original cargo volumes into the local entry 
probability values in Wx(t):

  (S13.3)

where Vx(t) is the proportion of S. noctilio-associated imports that arrived at a particular port 
x in year t. We calculated this proportion as:

  (S13.4)

where vx(t) is the tonnage of S. noctilio-associated cargo (see Tables S13.1 and S13.2) received 
at x in year t and Z is the total number of ports (i.e. 148). In keeping with our fi ndings from 
the PestID database, this transformation reduced the variation between ports to roughly 
three orders of magnitude by shrinking the lower tail of the distribution (i.e. increasing the 
lowest values) while keeping the upper values unchanged. We then rescaled Wx(t) to fi t p(t), 
so:

  (S13.5)

In summary, these equations set the entry potential to a minimum value (0.0008–0.005 per 
year) for ports with cargo imports below ~2  105 tonnes per year and then applied the log 
transform for ports with capacities above ~2  105 tonnes per year. Note that ports in close 
proximity (20 km or less) were aggregated to simplify the model calculations.

We used the Wx(t) probability values to simulate new entries of S. noctilio into eastern 
North America. We followed the concept, outlined by Rafoss (2003), where discrete 
stochastic simulation of entry locations is used to predict the establishment potential of an 
invading organism through time. Before the simulations, the model generated Wx(t) for each 
port of entry for the entire simulation horizon and then recreated the stochastic realization 
of the entry process for each year. Successful entries were added to a temporary map of 
known S. noctilio locations, which served as a starting point for the simulation of spread and 
establishment at each time step.
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Model component 2: simulating S. noctilio spread

We simulated spread as a travelling wave (Sharov and Liebhold, 1998) in a two-dimensional 
landscape. Because of the lack of data regarding the dispersal of S. noctilio in North America, 
we relied heavily on expert estimates (Peter de Groot, Canadian Forest Service; Dennis 
Haugen, USDA Forest Service) when developing this spread function. Much of the experts’ 
knowledge was derived from observations about the species’ dispersal behaviour in the 
southern hemisphere. However, the estimates also incorporate the limited information that 
could be derived from the recently discovered infestations in Ontario and New York.

Briefl y, for any given map cell, the model calculates the colonization rate (i.e. the rate of 
successful dispersal), b(d), as a function of the distance from the nearest location with an 
established S. noctilio population. Th e values of b(d) for S. noctilio were estimated through 
consultation with the aforementioned experts and fi tted to a distance-decay function:

 (S13.6)

where p0 is the probability of ‘local’ dispersal (i.e. the probability of dispersal at a distance of 
1 km, corresponding to the spatial resolution at which the model was originally formulated), 
d is the distance in kilometres from the nearest infested location (measured from the centre 
of the grid cell) and dmax is the maximum distance at which dispersing S. noctilio populations 
become established. Eff ectively, dmax describes the fl ight potential of S. noctilio at the 
population level, although the maximum fl ight distance for an individual can be considerably 
higher. We set dmax to 50 km/year and p0 to 0.2, again based on expert consultation. For each 
year, the model tracks locations with established populations and uses the spread model to 
disperse S. noctilio across the landscape.

Th e colonization rate is independent of the number of S. noctilio individuals at the source 
location. Th e spread component of our model operates at a coarse level; in particular, it does 
not track population numbers, instead assuming that if S. noctilio is present in a location, 
then the population is suffi  ciently large for the location to serve as a viable dispersal source 
at the probabilities defi ned by Eqn S13.6. Nevertheless, any stochastic dispersal function 
could be substituted for the one we utilized here.

Model component 3: simulating S. noctilio establishment

Dispersing S. noctilio individuals do not necessarily translate to established populations. In 
the model, a few general factors determine the likelihood of successful long-term population 
establishment in a given map location (i.e. map cell): (i) S. noctilio population growth and its 
constraints; (ii) availability of suitable hosts; and (iii) the susceptibility of the hosts in that 
location, which depends on both host species and age.

With respect to growth, in a cell successfully invaded by S. noctilio, the maximum 
population size is constrained by a carrying capacity, k, which is reached by geometric growth 
at a constant annual rate, R (Sharov and Liebhold, 1998):

  (S13.7)

where Nj(t) and Nj(t+1) are the population densities in the invaded cell at years t and t + 1. 
Essentially, k limits the maximum volume of pine killed by S. noctilio at time t, j(t), depending 
on , the minimum volume of pine required to support a single population unit:

  (S13.8)
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Because the S. noctilio population density in a map cell at any given time t may be limited by 
the amount of currently available (i.e. unconsumed) host resource, the carrying capacity 
serves as an important constraint that sets the annual limit for host mortality, which in turn 
aff ects the establishment potential.

To depict the availability of host resources for S. noctilio, we constructed maps of the 
average age and volume of pine stands, in cubic metres per hectare, for each map cell in the 
study area. Although numerous data sources (including remotely sensed data) can be utilized 
to estimate the spatial distributions of forest species, it is diffi  cult to estimate age and 
volume from such sources. Th erefore, we used Canada’s National Forest Inventory (CanFI) 
database to build the Canadian portion and the USDA Forest Service Forest Inventory and 
Analysis (FIA) database to generate the US portion of the pine map. Details about the designs 
of these two inventories have been published elsewhere (Gillis et al., 2005; Reams et al., 
2005); the US and Canadian databases had fundamentally diff erent structures (i.e. systematic 
sample plot observations in the US FIA versus area records in the CanFI) that required 
diff erent spatial interpolation techniques to map pine volumes and average forest stand age 
at a regional scale. For the US portion, we performed ordinary kriging (Cressie, 1993) of the 
FIA plot values for these two variables with a spherical semivariogram. Th e Canadian portion 
of the map was generated by integrating CanFI data with a satellite-based land-cover 
classifi cation using spatial randomization techniques (Yemshanov et al., 2012).

Table S13.3. Pine (Pinus) species growing in the US and/or Canada and documented in the 
countries’ forest inventory data. Ratings of species susceptibility to S. noctilio attack (from very high to 
low) were determined by a working group convened by the Forest Service’s Forest Health Technology 
Enterprise Team.

Susceptibility 
rating

Species 

Very high Austrian pine (P. nigra), Monterey pine (P. radiata), Scots pine (P. sylvestris), 
loblolly pine (P. taeda)

High Jack pine (P. banksiana), lodgepole pine (P. contorta), shortleaf pine (P. 
echinata), slash pine (P. elliottii), Jeffrey pine (P. jeffreyi), ponderosa pine (P. 
ponderosa), red pine (P. resinosa), Virginia pine (P. virginiana)

Medium Arizona pine (P. arizonica), knobcone pine (P. attenuata), sand pine (P. clausa), 
Apache pine (P. engelmannii), spruce pine (P. glabra), bishop pine (P. 
muricata), longleaf pine (P. palustris), Table Mountain pine (P. pungens), pitch 
pine (P. rigida), pond pine (P. serotina), Washoe pine (P. washoensis)

Low Whitebark pine (P. albicaulis), bristlecone pine (P. aristata), foxtail pine (P. 
balfouriana), Mexican pinyon pine (P. cembroides), Coulter pine (P. coulteri), 
border pinyon (P. discolor), common pinyon (P. edulis), limber pine (P. fl exilis), 
sugar pine (P. lambertiana), Chihuahua pine (P. leiophylla var. chihuahuana), 
Great Basin bristlecone pine (P. longaeva), singleleaf pinyon (P. monophylla), 
Arizona pinyon pine (P. monophylla var. fallax), western white pine (P. 
monticola), Parry pinyon pine (P. quadrifolia), grey pine (P. sabiniana), 
southwestern white pine (P. strobiformus), eastern white pine (P. strobus), 
Torrey pine (P. torreyana)

Maps for individual pine species occurring in the USA and/or Canada were aggregated into 
two large species groups based on their susceptibility to S. noctilio (Table S13.3): (i) a high-
hazard group including all species designated as having ‘very high’ or ‘high’ susceptibility by 
the previously mentioned FHTET working group on S. noctilio; and (ii) a low-hazard group 
including species designated as ‘medium’ or ‘low’ susceptibility (USDA Forest Service Forest 
Health Technology Enterprise Team, 2013). Th e metric of interest for the host maps was the 



proportion of the total forest volume represented by pines (i.e. in either the low- or high-
hazard group).

Th e model also required the representation of pine growth over time. We modelled 
growth rates, gv, for our two hazard groups using normal yield curves, which depict these 
rates as a function of stand age (in our case, the average stand age in a map cell). For the 
Canadian portion of the study, we used normal yield equations from Ung et al. (2009). Th ese 
models provide generalized yield curves as a function of two basic climate variables, degree-
days and annual precipitation. We used the USDA Forest Service Forest Vegetation Simulator 
(FVS) to build yield curves for the US portion of the study area (Dixon, 2013). By integrating 
growth equations for most common tree species with other environmental parameters, FVS 
predicts stand species composition and associated volumes at user-specifi ed time steps. Th e 
FVS has several regional variants that employ distinct, region-specifi c tree species growth 
equations. During the modelling process, we applied four regional variants: the Southern, 
Northeast, Lake States and Central States variants. Th e fi nal yield curves were aggregated at 
the province level of the Forest Service’s national framework of ecological units, commonly 
called ecoregions (Cleland et al., 2007). Note that we built idealized normal yield curves that 
assumed 100% pine stocking.

Finally, we defi ned host susceptibility, sv, as a species-dependent function of stand age 
(i.e. the average stand age in a map cell). A cell’s sv value equates to the probability of 
successful establishment in the cell, but also serves as a modifi er for determining what 
proportion of pines in the cell are susceptible to S. noctilio:

 (S13.9)

where aj is the cell’s average stand age in years, a0 is the age of stand closure (20 years), amax 
is the age when susceptibility reaches its maximum (65 years) and smax is the maximum 
susceptibility value for ageing stands. Basically, the sv value is set to zero when the stand age 
is less than the typical age of stand closure for pines (20 years) and is maximized when the 
stand age exceeds 65 years. We employed diff erent maximum susceptibility values for our 
two pine groups, assuming smax = 0.95 for species in the high-hazard group and smax = 0.50 
for species in the low-hazard group (see Table S13.3). Because sv defi nes the proportion of 
susceptible pines in a cell, it combines with host volume to dictate k.

With respect to spatial data (i.e. the maps of pine volume and stand age), our model 
required raster data sets in binary fl oating-point format (*.fl t fi les, with accompanying 
header and map projection fi les). Binary fl oating-point fi les can be generated straightforwardly 
via export from ESRI ArcInfo grid format. Other raster data sets required for the model were 
an area of interest mask and a raster representation of initial infestations at t = 0 (i.e. map 
cells where the pest was currently established at the beginning of the simulation runs). Th e 
carrying capacity, k, was incorporated as a single value, while sv and gv were both functions 
implemented as tables of values at diff erent ages for our two hazard groups.
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