## Water Dynamics in Plant Production, 2nd Edition

## **Multiple Choice Questions**

## Chapter 8 – The Plant as a Link between Soil and Atmosphere: an Overview

- **1.** Net radiation,  $R_N$ , at the soil surface is dissipated in **(a)** heating the air, **(b)** heating the soil, **(c)** evaporating water and **(d)** used in photosynthesis.
- (i) Which of these (a, b, c or d) contributes to actual soil evaporation or evapotranspiration, at another location?
- (ii) When actual evapotranspiration at a site exceeds the potential value because of the advection of energy, it is known as:
  - (a) the clothesline effect
  - (b) the oasis effect
  - (c) the albedo effect
  - (d) the van Bavel effect
- **2.** Potential evapotranspiration is greater than potential evaporation because:
- (a) the evaporative surface of a plant stand is distributed over different heights above a given area
- (b) evaporation takes place more easily from a leaf surface than a soil surface
- (c) evapotranspiration includes evaporation and transpiration
- (d) all of the above
- **3.** Which of the following factors are important in determining transpiration rate? (There may be more than one correct answer.)
- (a) soil water potential
- (b) soil hydraulic conductivity
- (c) net radiation
- (d) none of the above
- **4.** From the statements below, select the unique characteristics associated with the resistance to water movement from the substomatal cavity to the outside of a leaf. (There may be more than one correct answer.)
- (a) It is particularly large.
- (b) It includes a variable resistance.
- (c) It is the only resistance to water vapour in the soil-plant-atmosphere continuum.
- (d) It comprises two resistances in parallel.
- **5.** The equations developed by Penman and van Bavel for estimating potential evapotranspiration are known as combination equations because:
- (a) They combine information from the incoming solar radiation and its redistribution into long-wave radiation.
- **(b)** They 'lock in' evaporation and transpiration terms.
- **(c)** They combine thermodynamic and aerodynamic equations to overcome the need to measure the temperature of the evaporating surface.

