Avena barbata (slender oat)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Introductions
- Risk of Introduction
- Habitat
- Habitat List
- Biology and Ecology
- Climate
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Causes
- Pathway Vectors
- Impact Summary
- Environmental Impact
- Threatened Species
- Risk and Impact Factors
- Uses
- Uses List
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Contributors
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Avena barbata Pott / Brot
Preferred Common Name
- slender oat
Other Scientific Names
- Avena alba var. barbata Maire & Weiller
- Avena almeriensis Gand.
- Avena barbata subvar. Hirsute (Moench) E. Morren
- Avena deusta Ball
- Avena hoppeana Scheele
- Avena sallentiana Pau
- Avena sativa var. barbata (Pott ex Link) Fiori
- Avena sesquitertia hort. ex Steud.
- Avena strigosa subsp. barbata THELL.
- Avena striqosa subsp. Barbata (Pott ex Link) Thell.
International Common Names
- English: bearded oat
- Spanish: Avena delgada; Avena loca
- French: Avoine a deux barbes; Avoine barbue
- Portuguese: balanco-bravo
Local Common Names
- Austria: bart-Hafer
- Brazil: aveia-barbada; aveia-brava
- Germany: Wilder Hafer
- Italy: Avena a due barbe
- Norway: skjegghavre
- USA: slender oats; slender wildoat
EPPO code
- AVEBA (Avena barbata)
Summary of Invasiveness
Top of pageAvena barbata (slender oat) is a species of wild oat that is native to Asia and Mediterranean Europe. It was widely introduced to North America and other European countries both intentionally, as a fodder crop, and unintentionally in contaminated seed mixtures. A. barbata has spread widely in North America where it has been reported to displace native grass species. It is recorded as a noxious weed in the USA. In Australia, it outcompetes native grasses and forms a fibrous root system. It can also alter the fire regime of an area.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Monocotyledonae
- Order: Cyperales
- Family: Poaceae
- Genus: Avena
- Species: Avena barbata
Notes on Taxonomy and Nomenclature
Top of pageAvena barbata is a tetraploid grass (2n=28 chromosomes), originally thought to be derived from Avena fatua but is most likely to have arisen independently by polyploidization from the diploid (2n = 14 chromosomes) Avena hirtula-Avena wiestii complex (Garcia et al., 1991; Alicchio et al., 1995; Ladizinksky, 1995; Katsiotis et al. 1997).
Description
Top of pageA. barbata is an annual grass species, growing 30-60 cm tall, erect, stems erect, glabrous to short-soft-hairy. Leaves alternate; ligules 1-4 mm long, lacerate, auricles absent; sheaths glabrous to pubescent; blades linear, flat, 1-5 mm wide, glabrous to soft-puberulent. Inflorescence an open terminal panicle, 3-10 cm long. Spikelets 20-30 mm long, slightly compressed, composed of 3-8 florets, the glumes linear to narrowly lanceolate, the lower one 5-10 mm long, 1-nerved, the upper one 8-13 mm long, 3-nerved; lemmas 12-17 mm long, lanceolate, 3-5-nerved, the back keeled to rounded, the apex with two lateral teeth 4-5 mm long, the back of the lemma with a bent awn 12-20 mm long. In California, it flowers from March to June, while in Australia it flowers July-October (Arnow, 1987; Hitchcock, 1944; Holmgren and Holmgren, 1977; Munz, 1959; Rocha Afonso, 1980; Wilken, 1993).
A thorough description is given by Clayton et al. (2012) as follows:
Habit
Annual; culms solitary, or caespitose. Culms erect, or geniculately ascending; 30–100 cm long. Culm-nodes glabrous. Lateral branches lacking. Leaf-sheaths pilose. Ligule an eciliate membrane; 1–6 mm long; obtuse. Leaf-blades 6–30 cm long; 2–20 mm wide. Leaf-blade surface glabrous, or pilose; sparsely hairy.
Inflorescence
Inflorescence a panicle.Panicle open; elliptic; effuse; nodding; 15–30(–50) cm long; 6–12 cm wide. Primary panicle branches 9–18 cm long. Panicle branches smooth, or scaberulous. Spikelets pendulous; solitary. Fertile spikelets pedicelled. Pedicels filiform.
Fertile Spikelets
Spikelets comprising 2–3 fertile florets; with a barren rhachilla extension. Spikelets lanceolate; laterally compressed; 16–26 mm long; breaking up at maturity; disarticulating below each fertile floret. Rhachilla internodes pilose. Floret callus evident; bearded; obtuse. Floret callus hairs 2–3 mm long.
Glumes
Glumes persistent; similar; exceeding apex of florets; thinner than fertile lemma; gaping. Lower glume lanceolate; 16–26 mm long; 1 length of upper glume; membranous; without keels; 5(–7) -veined. Lower glume apex acuminate. Upper glume elliptic; 16–26 mm long; 1.3 length of adjacent fertile lemma; membranous; without keels; 7(–9) -veined. Upper glume apex acuminate.
Florets
Fertile lemma lanceolate; 12–20 mm long; coriaceous; much thinner above; without keel; 9 -veined. Lemma surface scabrous; rough above; pilose; hairy below. Lemma apex dentate; 2 -fid; awned; 3 -awned. Principal lemma awn dorsal; arising 0.5 way up back of lemma; geniculate; 30–60 mm long overall; with twisted column. Lateral lemma awns arising on apex of lobes; 3–12 mm long; shorter than principal. Palea 10–18 mm long. Palea keels ciliolate.
Flower
Anthers 3. Ovary pubescent all over.
Fruit
Caryopsis with adherent pericarp; sulcate on hilar side; hairy all over. Hilum linear.
Distribution
Top of pageNative to Asia and Mediterranean Europe it has been widely introduced, probably since the eighteenth century, to North America, Australia and other parts of Europe (GBIF, 2012).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 25 Feb 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Algeria | Present | Native | Invasive | ||||
Egypt | Present | Native | Invasive | ||||
Eritrea | Present, Widespread | ||||||
Libya | Present, Widespread | Native | Invasive | ||||
Morocco | Present, Widespread | Native | Invasive | ||||
South Africa | Present, Widespread | Invasive | |||||
Tunisia | Present, Widespread | Native | Invasive | ||||
Asia |
|||||||
Afghanistan | Present, Localized | Invasive | |||||
Azerbaijan | Present | ||||||
Iran | Present, Localized | ||||||
Iraq | Present, Localized | ||||||
Jordan | Present, Localized | ||||||
Pakistan | Present | Original citation: eFloras (2012) | |||||
Saudi Arabia | Present | ||||||
Europe |
|||||||
Andorra | Present, Localized | ||||||
Austria | Present, Localized | Introduced | |||||
Bosnia and Herzegovina | Present, Localized | Invasive | |||||
Bulgaria | Present, Localized | Invasive | |||||
Croatia | Present, Localized | ||||||
Cyprus | Present, Localized | ||||||
Denmark | Present, Localized | Introduced | Habitat is urban grassland environment, possibly caused by contaminated seed mixes | ||||
Finland | Present, Localized | ||||||
France | Present, Widespread | Invasive | |||||
Germany | Present, Widespread | Invasive | |||||
Greece | Present, Widespread | Native | Invasive | ||||
Italy | Present, Widespread | Invasive | |||||
North Macedonia | Present, Localized | Invasive | |||||
Norway | Present | Introduced | Invasiveness was not assessed as part of the 2007 Norwegian Black List creation | ||||
Portugal | Present, Widespread | Native | Invasive | ||||
Serbia | Present, Localized | Invasive | |||||
Spain | Present, Widespread | Native | Invasive | ||||
United Kingdom | Present, Localized | Introduced | Invasive | Recorded on mainland UK in the wild from 1908, Guernsey 1970, naturalized | |||
North America |
|||||||
United States | Present | ||||||
-Arizona | Present | Introduced | |||||
-California | Present | Introduced | Invasive | ||||
-Hawaii | Present | Introduced | Record on the USDA PLANTS database | ||||
-Massachusetts | Present | Introduced | Record on the USDA PLANTS database | ||||
-Nevada | Present | Introduced | |||||
-New Mexico | Present | Introduced | Recorded as 1980 Great Basin Naturalist | ||||
-Oregon | Present | Introduced | Oregon flora project species list, species noted on herbarium specimens at Linfield College, McMinnville, Oregon | ||||
-Washington | Present | Introduced | Cited as 1980 Great Basin Naturalist | ||||
Oceania |
|||||||
Australia | Present | Introduced | Invasive | Invasive locally | |||
New Zealand | Present, Localized | ||||||
South America |
|||||||
Argentina | Present, Localized | Invasive | |||||
Brazil | Present, Localized | Invasive | |||||
Chile | Present, Localized | Invasive | |||||
Peru | Present, Localized | Invasive | |||||
Uruguay | Present, Localized |
History of Introduction and Spread
Top of pageA. barbata was unintentionally introduced to Denmark in 1854 but the species is not currently recorded as invasive (Karlsson, 1998; NOBANIS, 2012). It was recorded in Austria in 1954 but its impact and population status are unknown (Essl and Rabitsch, 2002; NOBANIS, 2012). Vasey (1885) first reported the species in California but it had probably become widespread much earlier and is thought to have been introduced into California more than once during the eighteenth century (Robbins, 1940). Studies suggest that nearly all naturalized California strains are most closely related to those found in southwestern Spain (Pérez de la Vega, 1991; Garcia et al., 1989). Cluster and Allard (1995) and Rai (1985) also provided evidence showing that significant ecotypic differentiation may have taken place in California within the last 150-200 generations (perhaps less than 150-200 years).
Introductions
Top of pageIntroduced to | Introduced from | Year | Reason | Introduced by | Established in wild through | References | Notes | |
---|---|---|---|---|---|---|---|---|
Natural reproduction | Continuous restocking | |||||||
Austria | 1954 | No | No | Essl and Rabitsch (2002) | Unintentional introduction listed by NOBANIS online database | |||
Denmark | 1845 | No | No | Karlsson (1998) | Unintentional introduction and listed by NOBANIS online database as not invasive |
Risk of Introduction
Top of pageA. barbata has been unintentionally introduced to new areas as a contaminant of commercial purchased and farmer exchanged oat seeds.
Habitat
Top of pageA. barbata is native to Asia and Mediterranean Europe where it is located in grass meadows and within agricultural landscapes. It is an early pioneer grass species to freshly disturbed ground, especially when not shaded. It is known in its introduced range to be a crop edge, road verge or agricultural weed species; however it is also well adapted to urban amenity spaces.
As with most grass species A. barbata can tolerate a wide range of soil conditions but it thrives in poorer draining soils.
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Principal habitat | Natural |
Terrestrial | Managed | Cultivated / agricultural land | Principal habitat | Productive/non-natural |
Terrestrial | Managed | Managed grasslands (grazing systems) | Present, no further details | Natural |
Terrestrial | Managed | Disturbed areas | Present, no further details | Natural |
Terrestrial | Managed | Rail / roadsides | Principal habitat | Natural |
Terrestrial | Managed | Urban / peri-urban areas | Present, no further details | Natural |
Terrestrial | Natural / Semi-natural | Riverbanks | Present, no further details |
Biology and Ecology
Top of pageGenetics
A. barbata is a tetraploid grass (2n = 4x = 28 chromosomes) derived by polyploidization from the diploid (2n = 14 chromosomes) Avena hirtula – Avena wiestii complex (Garcia et al., 1991). It was originally believed to be derived from Avena fatua but this was proven to be incorrect.
Reproductive Biology
A. barbata is an annual graminoid and reproduces by seeds. It is self-pollinating, producing prolific seed counts which can overun other native species. The seeds are caryopsis oblong, about 8 mm long, ventrally compressed, longitudinally grooved, hairy and yellow-black in colour. In parts of Australia where the grass is invasive, the seeds of A. barbata will germinate in low soil moisture conditions whereas the seeds of native grasses require adequate soil moisture (Bell, 1999; Lenz and Facelli, 2005).
Physiology and Phenology
In California, it flowers from March to June, while in Australia it flowers July-October (Arnow, 1987; Hitchcock, 1944; Holmgren and Holmgren, 1977; Munz, 1959; Rocha Afonso, 1980; Wilken, 1993).
Longevity
The seed of A. barbata can usually remain viable for 6 months if not buried within soil, up to 3 years when buried within soil. Buried seed often remains dormant until exposed by cultivation or other disturbance.
Activity Patterns
This is a winter oat species. Within Australia, the plant life cycle is as follows: active growth: June-November; germination: May-June (can extend to August if dry); flowering: September-November; fruiting: December; optimum treatment to stop flowering or fruiting: July-October.
Associations
A. barbata growth may be enhanced by mycorrhizal infection (Rillig et al. 1998) as infection by mycorrhizal fungi (Glomus etunicatum, G. intraradices) enhanced growth of A. fatua in cultivated fields of A. sativa. (Koide et al., 1988; Koide and Lu, 1992; Lu and Koide, 1991).
Climate
Top of pageClimate | Status | Description | Remark |
---|---|---|---|
Cf - Warm temperate climate, wet all year | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year | |
Cs - Warm temperate climate with dry summer | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers | |
Cw - Warm temperate climate with dry winter | Preferred | Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters) | |
Df - Continental climate, wet all year | Tolerated | Continental climate, wet all year (Warm average temp. > 10°C, coldest month < 0°C, wet all year) | |
Ds - Continental climate with dry summer | Tolerated | Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers) | |
Dw - Continental climate with dry winter | Tolerated | Continental climate with dry winter (Warm average temp. > 10°C, coldest month < 0°C, dry winters) |
Soil Tolerances
Top of pageSoil drainage
- free
- impeded
Soil reaction
- acid
- alkaline
- neutral
Soil texture
- light
- medium
Special soil tolerances
- infertile
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Blumeria graminis | Pathogen | Whole plant | to genus | Sabri and Clarke, 1996; Sabri et al., 1997 | ||
Puccinia coronata | Pathogen | Whole plant | not specific | Douglas et al., 1996; Douglas et al., 1997 | ||
Ustilago avenae | Pathogen | Whole plant | not specific | Nielsen, 1993; Sabri and Clarke, 1996; Sabri et al., 1997 |
Notes on Natural Enemies
Top of pageThe genus Avena can serve as hosts to dwarf mosaic viruses (Achon et al., 1996). A. barbata and another species Avena fatua have been infected by smut and mildew fungi (Ustilago avenae, Blumeria graminis) (Nielsen, 1993; Sabri et al., 1997; Sabri and Clarke, 1996).
Puccinia rust fungi also affects A. barbata, however there are some strains resistant to infection (Karow et al., 1997; Katsiotis and Forsberg, 1995). Other species, including Avena sativa and A. fatua are hosts to Puccinia coronata and Puccinia graminis, which often cause significant damage to plants under cultivation in Canada (Chong, 1988, 1990; Chong and Harder, 1991; Chong and Seaman, 1989; 1990; Harder, 1989; Harder and Dale, 1990; Kolmer and Chong, 1993). On San Clemente Island, a biological control programme was established to test whether P. coronata could be used to control A. barbata (Douglas et al., 1996; 1997).
Means of Movement and Dispersal
Top of pageAccidental Introduction
A. barbata historically was unintentionally introduced to new areas via contaminated seed mixtures, meant to be of commercial quality oat.
Intentional Introduction
The species has been widely introduced to North America and a number of European countries as a fodder crop.
Pathway Causes
Top of pageCause | Notes | Long Distance | Local | References |
---|---|---|---|---|
Disturbance | Seed can propagate on freshly disturbed ground | Yes | ||
Forage | Has been introduced to N. America as a contaminant in forage seeds | Yes | USDA-NRCS, 2012 | |
Landscape improvement | Has been a contaminant within amenity grassland seed mixtures | Yes | USDA-NRCS, 2012 | |
People foraging | This is a wild oat species and has edible seed which could be spread while foraging | Yes | ||
Seed trade | Is a common contaminant in seed mixtures | Yes |
Pathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Mulch, straw, baskets and sod | If within a stand that is used for straw the seed could be transported unintentionally | Yes | ||
Wind | Seeds can be dispersed locally via wind. | Yes |
Impact Summary
Top of pageCategory | Impact |
---|---|
Cultural/amenity | Negative |
Economic/livelihood | Positive and negative |
Environment (generally) | Negative |
Environmental Impact
Top of pageImpact on Habitats
A. barbata has been found to out-compete native grass and woody species by exhausting the surface soil-water before native species have had a chance to establish (Standish et al., 2008). It has also been found to alter the fire regime of areas of Australia (FloraBase, 2012). Instead of woody species dominating areas, grass species are dominant and much easier to flash fire.
Threatened Species
Top of pageThreatened Species | Conservation Status | Where Threatened | Mechanism | References | Notes |
---|---|---|---|---|---|
Amaranthus pumilus (seabeach amaranth) | NatureServe; USA ESA listing as threatened species | California | Competition - monopolizing resources | US Fish and Wildlife Service, 2008 | |
Sibara filifolia (Santra Cruz Island Rockcress) | USA ESA listing as endangered species | California | Competition - monopolizing resources | US Fish and Wildlife Service, 2006 | |
Speyeria callippe callippe (callippe silverspot butterfly) | USA ESA listing as endangered species | California | Ecosystem change / habitat alteration | US Fish and Wildlife Service, 2009 | |
Acmispon dendroideus var. traskiae (San Clemente Island broom) | NatureServe; USA ESA listing as threatened species | California | Competition - smothering | US Fish and Wildlife Service, 2007; US Fish and Wildlife Service, 1984 | |
Verbesina dissita (big-leaved crownbeard) | National list(s); USA ESA listing as threatened species | California | Competition - monopolizing resources | US Fish and Wildlife Service, 2010 |
Risk and Impact Factors
Top of page- Invasive in its native range
- Proved invasive outside its native range
- Has a broad native range
- Abundant in its native range
- Is a habitat generalist
- Pioneering in disturbed areas
- Tolerant of shade
- Highly mobile locally
- Benefits from human association (i.e. it is a human commensal)
- Fast growing
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Reproduces asexually
- Damaged ecosystem services
- Ecosystem change/ habitat alteration
- Modification of fire regime
- Modification of hydrology
- Modification of nutrient regime
- Modification of successional patterns
- Negatively impacts tourism
- Reduced amenity values
- Reduced native biodiversity
- Threat to/ loss of endangered species
- Competition - monopolizing resources
- Competition - shading
- Competition - smothering
Uses
Top of pageEconomic Value
The straw of A. barbata can be used for biomass, fibre, mulch, paper-making and thatching (Hill, 1952).
Social Benefit
The seeds of A. barbata are rather small but very edible. The seed ripens in the latter half of the summer and, when harvested and dried, can still be viable after several years of storage. It has a floury texture and a mild, creamy flavor. It can be used as a staple food crop in either savory or sweet dishes. The seed can be cooked whole, though is commonly ground into flour and used as oat (A. sativa) is used, especially as a biscuit, bread or porridge component. The seed can also be sprouted and used raw or cooked in salad. The roasted seed can also be used as a coffee substitute (PFAF, 2012).
Uses List
Top of pageAnimal feed, fodder, forage
- Fodder/animal feed
- Forage
General
- Ornamental
Human food and beverage
- Cereal
- Seeds
Materials
- Fibre
- Green manure
- Poisonous to mammals
Similarities to Other Species/Conditions
Top of pageA. barbata is often misidentified as its ancestors Avena hirtula or Avena wiestii. They are all Mediterranean and desert ecotypes of a single biological order and often occur in mixed stands. A. wiestii is normally smaller and slender, with small spikelets (Garcia et al., 1991).
A. hirtula is more robust with spikelets of similar size to A. barbata. However, the patterns of morphological variation are so similar between the taxa that it is extremely difficult to assign single plants unambiguously to a specific group (Garcia et al., 1991).
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Physical/Mechanical Control
Mowing is an option for the suppression of A. barbata, however this should be timed prior to the production of seeds, otherwise it aids the dispersal of seeds into the soil seed bank. Intense ‘crash’ grazing by livestock (Vesk and Dorrough, 2006) could also be an option for controlling A. barbata. However, over-grazing could also cause the disturbance required to germinate the dominant A. barbata seed from the soil seed bank.
Biological Control
Douglas et al. (1996, 1997) summarized and evaluated a program that used P. coronata as a biocontrol agent for A. barbata on San Clemente Island.
Chemical Control
Miller and Nalewaja (1980), in North Dakota, USA established that fall and spring applications of triallate [S-(2,3,3-trichloroallyl)diisopropylthiocarbamate] were effective at controlling A. barbata. The authors concluded that fall applied triallate granules were more effective than either liquid or spring applications of either liquid or granules. When soil improvement is also incorporated into control methods the effectiveness of the triallate application was increased.
Alternatively in Australia it has been reported that spraying at the 3-5 leaf stage with Fusilade Forte and wetting agent is effective. Especially when repeated over a number of years. This prevents seed production and reduces biomass rather than eradication.
References
Top of pageArnow L, 1987. Gramineae. A Utah Flora. Great Basin Naturalist Memoirs, 9 [ed. by Welsh, S. L.\ Atwood, N. D.\ Goodrich, S.\ Higgins, L. C.]. 684-788.
Bell DT, 1999. Turner review no.1: The process of germination in Australian species. Australian Journal of Botany, 47:475-517.
Biological Records Centre, 2012. Online Atlas of the British and Irish flora. Wallingford, UK: Biological Records Centre. http://www.brc.ac.uk/plantatlas/
Calflora, 2012. Information on California plants for education, research and conservation. California, USA: Calflora. www.calflora.org
Chong J, 1988. Virulence and distribution of Puccinia coronata in Canada in 1986. Canadian Journal of Plant Pathology, 10: 237-278.
Chong J, 1990. Occurrence and virulence of oat crown rust in Manitoba in 1989. Canadian Plant Disease Survey, 70:44-45.
Chong J, Harder D, 1991. Occurrence of oat rusts in western Canada in 1990. Canadian Plant Disease Survey, 71:70.
Clayton WD, Vorontsova MS, Harman KT, Williamson H, 2012. GrassBase - The Online World Grass Flora. GrassBase.
Douglas L, Carsten L, Johnston M, Sands D, 1997. Evaluation of Puccinia coronata as a biocontrol agent of wild oats on San Clemente Island. Phytopathology, 87:25.
Douglas L, Reeves P, Stone J, Winchell C, Johnson M, Leonard K, Sands D, 1996. Puccinia coronata, a possible biocontrol agent of Avena spp. on San Clemente Island. Phytopathology, 86:15.
eFloras, 2012. Flora of Pakistan. Missouri, USA: Missouri Botanical Garden. http://www.efloras.org
Essl F, Rabitsch W, 2002. Neobiota in Osterreich. Vienna, Austria: Umweltbundesamt Wien, 432 pp.
FloraBase, 2012. The Western Australian Flora. Western Australia, Australia: Department of Environment and Conservation. http://florabase.dec.wa.gov.au/
GBIF, 2012. Global Biodiversity Information Facility. Global Biodiversity Information Facility (GBIF). http://data.gbif.org
Gleason HA, 1963. The New Britton and Brown illustrated flora of the northeastern United States and adjacent Canada. New York, USA: New York Botanical Garden.
Harder D, 1989. Incidence and virulence of Puccinia gram mis f. avenae in Canada in 1988. Canadian journal of plant pathology, 11:435-438.
Hitchcock A, 1944. Poaceae. In: Abrams L, ed. Illustrated Flora of the Pacific States. 1. Ophioglossaceae to Aristolochiaceae. Stanford, California, USA: Stanford University Press, 103-255.
Holmgren A, Holmgren N, 1977. Poaceae. In: Intermountain Flora. The monocotyledons, 6 [ed. by Cronquist]. New York, USA: New York Botanical Garden and Columbia University Press, 584 pp.
Hrusa GF, Glazner J, 1997. Report submitted to J, Glazner, Environmental Consulting, for Sierra Pacific Industries. Unpublished.
Karlsson T, 1998. List of Swedish karlvaxter. (Forteckning over svenska karlvaxter.) Svensk Bot. Tidskr, 91:241-560.
Munz P, 1959. A flora of California. Berkeley, California, USA: University of California Press, 1681 pp.
NOBANIS, 2012. European Network on Invasive Alien Species. European Network on Invasive Alien Species (online). www.nobanis.org
PFAF, 2012. Plants for a Future factsheet on Avena barbata. PFAF. http://www.pfaf.org/
Robbins W, 1940. Alien plants growing without cultivation in California, 637:128 pp.
Rocha Afonso M, 1980. Avena. In: Flora Europaea: Alismataceae to Orchidaceae, 5 [ed. by Tutin]. Cambridge, UK: Cambridge University Press, 452 pp.
Tommeras BA, 1994. Introduksjoner av fremmede organismer til Norge (Introduksjoner av fremmede organismer til Norge), 62. Norsk Institutt for Naturforskning, 1-141.
USDA-NRCS, 2012. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/
Vasey G, 1885. Descriptive catalog of grasses of the United States. Washington D.C: USDA, Government Printing Office, 56 pp.
Wagner WL, Herbst DR, Sohmer SH, 1990. Manual of Flowering Plants of Hawaii. Bernice Pauahi Bishop Museum Special Publication 83. Honolulu, Hawaii, USA: University of Hawaii.
Wilken D, 1993. Avena. In: The Jepson manual: vascular plants of California [ed. by Hickman, J.]. Berkeley, California, USA: University of California Press, 1400 pp.
Distribution References
Biological Records Centre, 2012. Online Atlas of the British and Irish flora., Wallingford, UK: Biological Records Centre. http://www.brc.ac.uk/plantatlas/
CABI Data Mining, Undated. CAB Abstracts Data Mining.,
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Calflora, 2012. Information on California plants for education, research and conservation., http://www.calflora.org
Essl F, Rabitsch W, 2002. (Neobiota in Osterreich)., Vienna, Austria: Umweltbundesamt Wien. 432 pp.
GBIF, 2012. Global Biodiversity Information Facility. http://www.gbif.org/species
Gleason HA, 1963. The New Britton and Brown illustrated flora of the northeastern United States and adjacent Canada., New York, USA: New York Botanical Garden.
Hrusa GF, Glazner J, 1997. Report submitted to J, Glazner, Environmental Consulting, for Sierra Pacific Industries.,
Karlsson T, 1998. List of Swedish karlvaxter. (Forteckning over svenska karlvaxter). In: Svensk Bot. Tidskr, 91 241-560.
Tommeras BA, 1994. (Introduksjoner av fremmede organismer til Norge)., 62 Norsk Institutt for Naturforskning. 1-141.
USDA-NRCS, 2012. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
Wagner WL, Herbst DR, Sohmer SH, 1990. Manual of Flowering Plants of Hawaii. In: Bernice Pauahi Bishop Museum Special Publication 83, Honolulu, Hawaii, USA: University of Hawaii.
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GBIF (2011)Global biodiversity information facility database | http://data.gibf.org.au/nimpis | |
NOBANIS: North European and Baltic Network on Invasive Alien Species | http://www.nobanis.org | |
USDA-PLANTS | http://plants.usda.gov |
Contributors
Top of page4/01/13 Original text by:
Philip Roberts, CABI, Nosworthy Way, Wallingford, Oxfordshire, OX10 8DE, UK
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/