Senna obtusifolia (sicklepod)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Biology and Ecology
- Rainfall
- Rainfall Regime
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Vectors
- Plant Trade
- Impact Summary
- Impact
- Environmental Impact
- Impact: Biodiversity
- Social Impact
- Risk and Impact Factors
- Uses
- Uses List
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Senna obtusifolia (L.) Irwin & Barneby
Preferred Common Name
- sicklepod
Other Scientific Names
- Cassia obtusifolia L.
- Cassia tora L.
- Cassia tora var. obtusifolia (L.) Haines
- Emelista tora (L.) Britton & Rosa
- Senna tora (L.) Roxb.
International Common Names
- Spanish: ejotillo; sambran (Spain); yerba hedionda (Cuba)
- French: pistache marron
Local Common Names
- : coffeeweed; habucha; peanut weed
- Australia: Chinese senna; coffee weed; Java bean; sicklepod senna
- Bolivia: aya-poroto; mamuri
- Brazil: fedegoso; fedegoso-branco; mata pasto; matapasto liso
- Colombia: bicho; bichomacho; chilinchil
- Cuba: guanina
- Dominican Republic: brusca cimarrona; brusca hembra
- El Salvador: comida de murcielago; frijolillo
- French Guiana: cafe zerb pian
- Guatemala: ejote de invierno; ejotil
- Madagascar: voamahatsara
- Mauritius: cassepuante; herbe pistache
- Paraguay: taperva; taperva moroti; taperva sayju
- Puerto Rico: dormidera
- Venezuela: chiquichique
EPPO code
- CASOB (Cassia obtusifolia)
Summary of Invasiveness
Top of pageS. obtusifolia and S. tora are tall subshrubs that produce a massive seed bank and are readily dispersed by livestock. They are primarily highly economically detrimental to a number of agricultural crops especially in North America and Australasia. S. obtusifolia is spreading and displacing native vegetation in the Australasia/Pacific regions and is invasive in parts of East Africa. In places it produces impenetrable monotypic stands. In Australia it is thought to increase the risk of damage to forest by fire.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Fabales
- Family: Fabaceae
- Subfamily: Caesalpinioideae
- Genus: Senna
- Species: Senna obtusifolia
Notes on Taxonomy and Nomenclature
Top of pageThere has been much debate on the classification of S. obtusifolia. Linnaeus (1753), De Wit (1955) and Randell (1988) recognize Cassia obtusifolia and Cassia tora as separate species but others (Bentham, 1871) recognized them as the same species, and Haines (1922) claims that they are intraspecific taxa within the same species. The Botanical Laboratory of the United States Department of Agriculture advises that Cassia obtusifolia is a synonym of Cassia tora and this was accepted by Holm et al. (1997).
Characteristics proposed to separate S. obtusifolia and S. tora include glands on the leaf rachis, length of flower pedicel, length and width of petals, degree of fruit curvature, seed coat features, chemical content and smell of crushed foliage (see Morphology section). Randell (1995) studied the taxonomy and evolution of S. obtusifolia and S. tora and concluded that S. tora probably evolved in Asia from plants of S. obtusifolia. Randell (1988) separated the two taxa on the following basis: S. obtusifolia: petioles 1.5-2 cm long; fruiting pedicels 2-3 cm long; anthers with short beaks; seed areole narrow, not longitudinal. S. tora: petioles 2-4.5 cm long; fruiting pedicels to 1.5 cm long; anthers truncate, beakless; seed areole broad, longitudinal.
Upadhyaya and Singh (1986) claim that S. tora and S. obtusifolia differ in their anthraquinone content and that they also fail to hybridize. Most material described as S. tora from Africa and America (north, south and central) is S. obtusifolia but both species are found in Asia and Australia. The confused nomenclature is apparent in the literature; S. tora is often cited when it should be called S. obtusifolia but it is often not possible to be confident about the correct identification where the species co-exist.
The original genus Cassia is from the Greek kasia, derived by Dioscorides (1st century AD) from the Hebrew quetsi'oth, denoting 'fragrant shrubs'; obtusifolia combines the Latin obtusos, meaning 'blunt', with folius, a leaf, and refers to the rounded leaf apices (Parsons and Cuthbertson, 1992).
Description
Top of pageTwo stipules, about 15 mm long, are present where the alternate leaves join the stem. The first true leaves are pinnate with two pairs of leaflets. Leaves in mature plants are even-pinnately compound, 8 to 12 cm long, with three pairs of leaflets. The leaves of S. tora are rank-smelling when crushed (Holm et al., 1997) but S. obtusifolia is less pungent. Leaflets are obovate to oblong-obovate with asymmetrical bases, increasing in size from the base to the apex of the leaf, up to 6 cm long and 4 cm wide. The tips of the leaflets are bluntly oval to round, with a very small point at the tip of the main vein. A small, rod-like gland is situated on the rhachis between the lower pair of leaflets but, in S. tora, a second gland is present between the middle pair of leaflets. A second gland is sometimes present in S. obtusifolia but only on lower leaves (Brenan, 1967).
Flowers are solitary or in pairs, in leaf axils, on pedicels 1-3 cm long (1 cm in S. tora). The calyx has five free, unequal sepals, keeled on the back. The corolla has five free, spreading, yellow petals, obovate to obovate-oblong, narrowed at the base and rounded at the tip, except for the standard (uppermost petal) which has two lobes. There are 10 stamens of which seven are fertile and three are staminodes. The ovary has numerous ovules. In S. obtusifolia, the stigma is oblique with an acute rim; in S. tora it is straight with two rolled back lips (ACTA, 1986a, b). The fruit is a brownish-green, slender, curved, compressed pod, 10 to 25 cm long and 2 to 6 mm wide, containing 25 to 30 seeds. Pods are slightly indented between the seeds. There are two major variants of S. obtusifolia in the Americas, differing primarily in pod type. Plants from the Antilles and the USA have pods 3.5-6 mm in diameter, as do African specimens and those from India, Indo Malaya and China (Irwin and Barneby, 1982). In South America and the Philippines, the pod is narrower (2-3.5 mm) in diameter and strongly curved. Seeds are rhomboidal, 4 to 5 mm long, shiny and yellowish brown to dark red. In S. obtusifolia, the areole (marking on the seed coat) is very narrow (0.3 to 0.5 mm wide); in S. tora it is large (1.5 to 2 mm wide) (Brenan, 1967).
Distribution
Top of pageS. obtusifolia is a native to tropical South America but has become widespread throughout the tropics and subtropics. However, the extent of its original distribution in the neotropics is unknown. It has been generally confused with S. tora, a species confined to Asia from India to China and Fiji, with the possible exception of one Congo specimen and a single specimen from Mafia Island, Tanzania (Brenan, 1967). In the USA the range of S. obtusifolia is similar to that of 150 years ago although infestations are still increasing (Teem et al. 1980). In northern Queensland, Australia, it infests about 600,000 ha and is still spreading. Although S. obtusifolia can become widespread in Australia, a model predicts that its optimal habitat will be coastal Queensland and New South Wales. This model also provides a predicted world distribution map that highlights regions such as much of southern Europe, South-East Africa (where Witt and Luke (2017) have recorded this species as invasive), Madagascar and North New Zealand as having a high potential to support populations of the species. There is also some evidence that a cold tolerant biotype may be evolving and this would further increase the potential range of the weed (Mackey et al., 1997).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 25 Feb 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Benin | Present | ||||||
Botswana | Present | Introduced | Invasive | ||||
Burundi | Present | Introduced | Invasive | ||||
Cameroon | Present | ||||||
Comoros | Present, Widespread | Introduced | Invasive | ||||
Congo, Democratic Republic of the | Present | ||||||
Eritrea | Present | ||||||
Ethiopia | Present | Introduced | Invasive | ||||
Gambia | Present | ||||||
Ghana | Present | ||||||
Guinea | Present | ||||||
Guinea-Bissau | Present | ||||||
Kenya | Present | Introduced | Invasive | ||||
Liberia | Present | ||||||
Malawi | Present | Introduced | Invasive | ||||
Mali | Present, Widespread | Introduced | Invasive | ||||
Mauritius | Present | ||||||
Namibia | Present | ||||||
Niger | Present | ||||||
Nigeria | Present | ||||||
Rwanda | Present | Introduced | |||||
Senegal | Present | ||||||
Seychelles | Present | Original citation: Robertson, 1989 | |||||
Sierra Leone | Present | ||||||
South Africa | Present | ||||||
Sudan | Present | ||||||
Tanzania | Present | Introduced | Invasive | ||||
-Zanzibar Island | Present | ||||||
Togo | Present | ||||||
Uganda | Present | Introduced | Invasive | ||||
Zambia | Present | Introduced | Invasive | ||||
Zimbabwe | Present | Introduced | Invasive | ||||
Asia |
|||||||
Bangladesh | Present | ||||||
Bhutan | Present | Introduced | |||||
Cambodia | Present | ||||||
China | Present | ||||||
Hong Kong | Present | ||||||
India | Present | Present based on regional distribution. | |||||
-Maharashtra | Present | ||||||
-Odisha | Present | ||||||
-Uttar Pradesh | Present | ||||||
Indonesia | Present | ||||||
Israel | Present | Introduced | Invasive | ||||
Japan | Present | ||||||
Malaysia | Present | ||||||
Myanmar | Present | ||||||
Nepal | Present | ||||||
Pakistan | Present | ||||||
Philippines | Present, Widespread | Introduced | Invasive | ||||
South Korea | Present | ||||||
Sri Lanka | Present | ||||||
Taiwan | Present | ||||||
Thailand | Present | ||||||
Vietnam | Present | ||||||
Europe |
|||||||
Norway | Present, Localized | Introduced | |||||
Spain | Present | ||||||
North America |
|||||||
Anguilla | Present | ||||||
Antigua and Barbuda | Present | ||||||
Belize | Present | ||||||
Cuba | Present | ||||||
Dominica | Present | ||||||
Grenada | Present | ||||||
Guadeloupe | Present | ||||||
Honduras | Present, Widespread | Native | |||||
Martinique | Present | ||||||
Mexico | Present, Widespread | Native | |||||
Montserrat | Present | ||||||
Puerto Rico | Present | ||||||
Saint Kitts and Nevis | Present | ||||||
Saint Lucia | Present | ||||||
Saint Vincent and the Grenadines | Present | ||||||
Trinidad and Tobago | Present | ||||||
United States | Present, Widespread | ||||||
-Alabama | Present, Widespread | Invasive | |||||
-Arkansas | Present | ||||||
-California | Present, Localized | Invasive | |||||
-Connecticut | Present | ||||||
-Delaware | Present | ||||||
-Florida | Present, Widespread | ||||||
-Georgia | Present, Widespread | Invasive | |||||
-Hawaii | Present, Localized | Native | Invasive | ||||
-Illinois | Present | ||||||
-Indiana | Present | ||||||
-Iowa | Present | ||||||
-Kansas | Present | ||||||
-Kentucky | Present | ||||||
-Louisiana | Present, Widespread | ||||||
-Maryland | Present | ||||||
-Massachusetts | Present | ||||||
-Mississippi | Present, Widespread | ||||||
-Missouri | Present | ||||||
-New Jersey | Present | ||||||
-New York | Present | ||||||
-North Carolina | Present, Widespread | Invasive | |||||
-Oklahoma | Present | ||||||
-Pennsylvania | Present | ||||||
-Rhode Island | Present | ||||||
-South Carolina | Present, Widespread | Invasive | |||||
-Tennessee | Present | ||||||
-Texas | Present, Widespread | ||||||
-Virginia | Present, Widespread | Invasive | |||||
-West Virginia | Present | ||||||
-Wisconsin | Present | ||||||
Oceania |
|||||||
American Samoa | Present | ||||||
Australia | Present, Widespread | Introduced | Invasive | ||||
-Northern Territory | Present, Widespread | Introduced | Invasive | First reported: ca1871 | |||
-Queensland | Present, Widespread | Introduced | Invasive | First reported: ca1917 | |||
-Western Australia | Present, Localized | Native and Introduced | Invasive | First reported: 1990s | |||
Cook Islands | Present | ||||||
Federated States of Micronesia | Present | Introduced | Invasive | ||||
Fiji | Present, Widespread | Introduced | Invasive | ||||
Guam | Present | Introduced | Invasive | ||||
New Caledonia | Present | ||||||
Palau | Present | Introduced | Invasive | ||||
Papua New Guinea | Present | ||||||
Samoa | Present | ||||||
Solomon Islands | Present | ||||||
Timor-Leste | Present, Widespread | Introduced | Invasive | ||||
Tonga | Present, Widespread | Introduced | Invasive | ||||
Tuvalu | Present | ||||||
Vanuatu | Present, Widespread | Introduced | Invasive | ||||
South America |
|||||||
Argentina | Present, Widespread | Native | |||||
Bolivia | Present | Native | |||||
Brazil | Present | Native | |||||
-Alagoas | Present | Native | |||||
-Amazonas | Present | Native | |||||
-Bahia | Present | Native | |||||
-Ceara | Present | Native | |||||
-Espirito Santo | Present | Native | |||||
-Goias | Present | Native | |||||
-Maranhao | Present | Native | |||||
-Mato Grosso | Present | Native | |||||
-Minas Gerais | Present, Widespread | Native | |||||
-Para | Present | Native | |||||
-Paraiba | Present | Native | |||||
-Parana | Present | Native | |||||
-Pernambuco | Present | Native | |||||
-Piaui | Present | Native | |||||
-Rio Grande do Norte | Present | Native | |||||
-Rio Grande do Sul | Present | Native | |||||
-Rondonia | Present | Native | |||||
-Roraima | Present, Widespread | Native | |||||
-Santa Catarina | Present | Native | |||||
-Sao Paulo | Present | Native | |||||
-Sergipe | Present | Native | |||||
Colombia | Present, Widespread | Native | |||||
Ecuador | Present | ||||||
French Guiana | Present | Native | |||||
Guyana | Present | ||||||
Peru | Present | ||||||
Suriname | Present | ||||||
Venezuela | Present |
History of Introduction and Spread
Top of pageHabitat
Top of pageHabitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed forests, plantations and orchards | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Present, no further details | Harmful (pest or invasive) |
Hosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Arachis hypogaea (groundnut) | Fabaceae | Main | |
Capsicum annuum (bell pepper) | Solanaceae | Other | |
Citrus | Rutaceae | Other | |
Cocos nucifera (coconut) | Arecaceae | Main | |
Coffea arabica (arabica coffee) | Rubiaceae | Other | |
Colocasia esculenta (taro) | Araceae | Main | |
Corchorus (jutes) | Tiliaceae | Other | |
Fragaria ananassa (strawberry) | Rosaceae | Other | |
Glycine max (soyabean) | Fabaceae | Main | |
Gossypium (cotton) | Malvaceae | Main | |
Helianthus annuus (sunflower) | Asteraceae | Other | |
Hevea brasiliensis (rubber) | Euphorbiaceae | Other | |
Ipomoea batatas (sweet potato) | Convolvulaceae | Other | |
Manihot esculenta (cassava) | Euphorbiaceae | Other | |
Musa (banana) | Musaceae | Other | |
Musa textilis (manila hemp) | Musaceae | Other | |
Nicotiana tabacum (tobacco) | Solanaceae | Other | |
Oryza sativa (rice) | Poaceae | Main | |
Phaseolus lunatus (lima bean) | Fabaceae | Other | |
Phaseolus vulgaris (common bean) | Fabaceae | Main | |
Saccharum officinarum (sugarcane) | Poaceae | Main | |
Sorghum bicolor (sorghum) | Poaceae | Main | |
Vigna unguiculata (cowpea) | Fabaceae | Other | |
Zea mays (maize) | Poaceae | Main |
Biology and Ecology
Top of pageIn the New World there are two forms of S. obtusifolia. The first originating from the Caribbean and also found in the USA has a uniglandular extra-floral nectary on the upper surface of the rachis (and 2n=28) and the other from northern South America has two extra-floral nectaries (and 2n=26) (Irwin and Barneby, 1982). In Paraguay both chromosome numbers (2n=26 and 2n=28) have been reported (Anon., unda). Senna obtusifolia and S. tora are caryologically distinct even though both have n=13 but some forms of obtusifolia have n=12, 13, 14 and some Indian forms of tora have n=13, 14. It has been suggested that S. tora derived from the Caribbean form of S. obtusifolia and could have arisen via aneuploid loss from obtusifolia (Randell, 1995; Mackey et al., 1997). There is also some evidence that a cold-tolerant biotype may be evolving and this would further increase the potential range of the weed (Mackey et al., 1997).
Physiology and phenology
Germination can occur between 13 and 40°C (Misra, 1969) and at any time of the year provided moisture is available (Parsons and Cuthbertson, 1992). Seedlings can emerge from a soil depth of 12.7 cm but not from 15 cm (Teem et al., 1980). Emergence from 12.7 cm takes 9 days but 63% emergence takes place within 3 days when seeds are only 2.5 cm deep. Seedling growth is best between 30 to 36°C (Teem et al., 1980). In Australia, seedling growth is slow in early spring but increases rapidly at temperatures over 24°C, primary root growth is optimum at 32°C (Parsons and Cuthbertson, 1992). Holm et al. (1997) state that optimum root growth occurs at 25°C.
Intraspecific competition increases plant height, whilst branching decreases as plant density rises from 1 to 40 plants/m² (Singh, 1969). Photoperiod dramatically affects growth. In India, as the photoperiod increased from 6 to 15 hours plants grew taller. Continuous light, however, results in short plants (Misra, 1969). Turner and Karlander (1975) found that 6-12 hours of light induces 100% flowering and pods are only produced when plants receive between 8 and 11 hours of light (Misra, 1969). Photoperiod responses may vary around the world but it appears that S. tora and S. obtusifolia are short-day plants. Retzinger (1983) recorded seed production of 2800 to 8200 seeds/plant resulting in an enormous seed bank in the soil.
Flowers first appear after 43-84 days depending on ecotype and climate. Being a short-day plant, short photoperiods accelerate reproductive development and 16 h light prevents flowering. Short days are not only necessary for flower induction but also for bud development (Mackey et al., 1997).
Reproductive biology
Pollen is released through the vibration of the flowers by bees (buzz pollination) and it is thought that self-pollination is probably the norm. The dehiscent pod can disperse seeds up to 5 m. Further dispersal can occur via water or in mud attached to the feet or fur of animals, or to shoes and machinery. When ingested by cattle, horse or goats it may survive the passage of the gut (Mackey et al., 1997).
Seeds of S. tora and S. obtusifolia have hard seed coats which need to be mechanically damaged to break dormancy. In dry storage, seeds lose their viability quite rapidly (Doll et al., 1976); seeds stored for three years had an overall germination of 22%. Nine-year-old seed had 9% germination (Ewart, 1908) and 10% of seed buried in the soil for 30 months germinated (Egley and Chandler, 1978). Baskin et al. (1998) report that 90% of seeds are green, hard-coated and dormant while 10% are brown and non-dormant. After scarification, dry heat at 80-100°C, or alternating temperatures, the green seeds would germinate in either light or dark conditions. Seeds are readily scarified by fire (Mackey et al., 1997).
Ecology
In Minas Gerais, Brazil, S. obtusifolia is commonly found in early succession following fire in secondary forest, but does not become dominant (Martins et al., 2002), and is an important woody plant component of Roraima Savannahs (Miranda et al., 2002). In northern Australia S. obtusifolia abundance is positively correlated with buffalo activity (Braithwaite et al., 1984).
Environmental Requirements
S. obtusifolia can grow in a wide range of soil types. It also tolerates much variation in soil pH and nutrients. Plant growth can be affected by soil phosphorus and potassium, for instance, low soil potassium concentrations result in stunted growth. In North America extreme temperatures limit the range of the plant, whereas in Australia it is thought to be limited by soil moisture availability and dry stress. Disturbance, either through logging and road construction or from feral animals (cattle and pigs) and storms, increases open forest and woodland susceptibility to invasion (Mackey et al., 1997).
Seeds germinate between 18 and 36°C and seedling growth occurs at the temperature range of 18-39°C, but the threshold for leaf production is around 13°C (Mackey et al., 1997).
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Mean annual rainfall | 640 | 4290 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
Soil reaction
- acid
- neutral
Soil texture
- heavy
- light
- medium
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Alternaria cassiae | Pathogen | Leaves/Stems | soyabeans | |||
Anabasis ochrodesma | Herbivore | Leaves | ||||
Caryedon pallidus | Herbivore | Seeds | ||||
Chalcomyza | Herbivore | Leaves | ||||
Endophyllum cassiae | Pathogen | Leaves | ||||
Phoebis sennae | Herbivore | Leaves | ||||
Pseudocercospora nigricans | Pathogen | Leaves | Brazil | wheat | ||
Sennius fallax | Herbivore | Seeds | ||||
Sennius instabilis | Herbivore | Seeds | ||||
Sennius rufescens | Herbivore | Seeds | ||||
Typhedanus undulatus | Herbivore | Leaves |
Notes on Natural Enemies
Top of pageMeans of Movement and Dispersal
Top of pageS. obtusifolia is spread via the gut of domestic livestock and by motor vehicles (Neldner et al., 1997).
Agricultural practices
In Australia's Queensland S. obtusifolia escaped from green manure trial plots (Neldner et al., 1997).
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
True seeds (inc. grain) | seeds |
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | Negative |
Biodiversity (generally) | Negative |
Crop production | Negative |
Environment (generally) | Negative |
Fisheries / aquaculture | None |
Forestry production | Negative |
Human health | None |
Livestock production | Negative |
Native fauna | None |
Native flora | Negative |
Rare/protected species | None |
Tourism | None |
Trade/international relations | None |
Transport/travel | None |
Impact
Top of pageS. tora or S. obtusifolia is an alternative host for the pests Etiella zinckenella in India (Subba Rao et al., 1976) and Aphis craccivora in India (Patel and Patel, 1972) and Uganda (Davies, 1972). In Venezuela, S. obtusifolia is a reservoir for Tobacco mosaic virus which is spread by Myzus persicae (Debrot, 1974). It is also a source of Colletotrichum capsici which causes anthracnose on tomato fruit and cotton seedlings (McLean and Roy, 1991) and of S. fragariae which causes anthracnose on strawberries (Howard and Albregts, 1973). Although the plant is not palatable, cattle may occasionally eat it when little other forage is available and poisoning may result (Mackey et al., 1997).
Cattle will not feed on the growing plant of S. obtusifolia, although they will eat it in silage and also the dry seed pods (Cock and Evans, 1984). Seeds of S. obtusifolia are harmful to chickens due to the presence of a trypsin inhibitor, but this is inactivated by boiling, which converts the seeds into a good source of protein (Cock and Evans, 1984).
In Benin farmers have reported S. obtusifolia as alternative host of cowpea pests (Kossou et al., 2001).
Environmental Impact
Top of pageImpact: Biodiversity
Top of pageSocial Impact
Top of pageRisk and Impact Factors
Top of page- Proved invasive outside its native range
- Highly adaptable to different environments
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Highly mobile locally
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Damaged ecosystem services
- Ecosystem change/ habitat alteration
- Negatively impacts agriculture
- Negatively impacts animal health
- Reduced native biodiversity
- Competition - monopolizing resources
- Pest and disease transmission
- Produces spines, thorns or burrs
- Highly likely to be transported internationally accidentally
- Difficult to identify/detect as a commodity contaminant
- Difficult to identify/detect in the field
- Difficult/costly to control
Uses
Top of pageS. tora and S. obtusifolia are reported to have a number of medicinal uses, indeed, S. tora is reputed to have been used for medicinal purposes as early as 4000 BC (Nickell, 1960). The whole plant, especially the root, has purgative (Ambasta, 1986) and antihelminthic properties and the leaves are used to treat ringworm (Ambasta, 1986) and other skin diseases (Cock and Evans, 1984). Quisumbing (1951) records that S. tora is used as a vermifuge and purgative in the Philippines and to treat dysentery and opthalmia in Indo-China. In French Guiana root tincture is rubbed on rheumatic areas and the leaf infusion is effective for renal calculi (DeFilipps et al., 2004).
Uses List
Top of pageAnimal feed, fodder, forage
- Fodder/animal feed
Medicinal, pharmaceutical
- Traditional/folklore
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Cultural Control
Control of S. tora and S. obtusifolia is difficult and can be obtained only with a sustained combination of all available methods. Although repeated discing of summer fallows favours germination and emergence, and tends to reduce seed numbers in the soil (Bridges and Walker, 1985), cultivation usually spreads rather than controls these weeds. Hence, single plants should be grubbed out before flowering. Hand pulling is difficult because of the deep, curved taproot, and plants can regrow from underground buds in the crown region (Holm et al., 1997). Larger colonies can be slashed but this does not eliminate S. tora and S. obtusifolia. Slashing reduces plant vigour which, with a programme of top dressing and restricted grazing, enables re-establishment of native pastures (Parson and Cuthbertson, 1992). As shading severely limits S. obtusifolia growth, late emerging seedlings can be somewhat suppressed by young soyabean if the rows are narrow enough for rapid canopy closure (Nice et al., 2001).
Zero-tillage land management can lead to increased seed populations compared with conventionally tilled plots (Vencill and Banks, 1994).
Various mulching treatments can be used to control S. tora and S. obtusifolia: rye mulch is effective in sunflower and soyabeans (Brecke and Schilling, 1996), giving up to 90% early control (Worsham, 1991). Polypropylene fabric mats completely inhibit the growth of S. obtusifolia when placed over glasshouse flats (Martin et al., 1987). Browne et al. (1989) have demonstrated the potential for controlling S. obtusifolia by soil solarization with clear plastic but they concede that this may only be economical for domestic gardens and small areas of horticultural crops.
Competitive crops offer possibilities for suppressing the growth of S. tora and S. obtusifolia, for example, Shaw et al. (1997) compared different soyabean cultivars and found that cultivar 9592 Pioneer was more effective in reducing shoot height than Asgrow 5979 when no herbicide treatment was used
In regions where S. obtusifolia is still spreading, such as northern Australia, it has been suggested that closing or relocating roads and restricting the movement of cattle to uninvaded areas are measures that may limit range expansion (Neldner et al., 1997).
Biological Control
S. obtusifolia has been a target weed for biological control, particularly in the USA. Alternaria cassiae, formulated as a mycoherbicide, has given >96% control of S. obtusifolia and increased the yields of soyabean (Parsons and Cuthbertson, 1992). Granular formulations of A. cassiae mycelia with sodium alginate + kaolin, applied pre-emergence (using approximately 3 kg conidia/500 kg formulation), gave 50% control of S. obtusifolia in soyabeans within 14 days and significantly increased crop yield (Walker, 1983). In greenhouse trials, an inoculum concentration of 10,000 spores/ml of A. cassiae gave 100% control of S. obtusifolia (Boyette and Walker, 1985). Another species, Alternaria alternata, infecting S. obtusifolia has been discovered widening the range of suitable pathogens to be evaluated to control the species using bioherbicides (Mello et al., 2001). A strain of Fusarium oxysporum isolated from S. obtusifolia has potential as a mycoherbicide (Boyette et al., 1993). Pseudocercospora nigricans has also been identified as a potential biological control agent (Hofmeister and Charudattan, 1987). In a review of possibilities for the biological control of S. tora and S. obtusifolia, Cock and Evans (1984) suggested that the bruchid Sennius instabilis, which attacks S. obtusifolia in tropical America, should be considered for introduction against S. tora in the Old World, and that three fungi (Pseudocercospora nigricans, Pseudoperonospora cassiae and Ravenelia berkeleyii) should be evaluated for possible use as mycoherbicides or classical biological control agents.
Walker and Tilley (1997) identified Myrothecium verrucaria as a potential mycoherbicide agent although it does affect a number of plant species including some economically important crops. Müller-Schärer et al. (2000) have reported that early results indicated that a multiple-pathogen strategy consisting of four pathogens applied in a single, post-emergence spray was feasible without loss of efficacy or host specificity. Following a survey of the phytophagous arthropod fauna in Central America, two species, Mitrapsylla albalineata (Homoptera: Psyllidae) and Conotrachelus sp. 'Morelos' (Coleoptera: Curculionidae), have been brought to Australia for further investigations as potential biocontrol agents (Palmer and Pullen, 2001).
Chemical Control
Herbicides that give control of S. tora and S. obtusifolia, either alone or in mixtures with other products include: 2,4-D amine (rice); 2,4-DB (groundnuts, soyabean); acifluorfen (groundnuts, mung bean, soyabean); atrazine (maize, sorghum); butylate (maize); chlorimuron (soyabean); chloroxuron (carrots, onions, soyabean); clopyralid (barley, oats, wheat); dicamba (maize); dichlorprop (cereals); diuron (cotton, oats, soyabean); EPTC (castor, citrus, flax, maize, Phaseolus beans, potato, sorghum, sugar beet, sunflower, sweet potato); flumetsulam (soyabean); fluometuron (cotton); fluridone (cotton); glufosinate (soyabean); glyphosate and glyphosate trimesium (land preparation, minimum tillage, tree crops, vines); imazaquin (groundnut, soyabean); linuron (cotton, potato, soyabean); metribuzin (soyabean); MSMA (cotton); norflurazon (cotton); oxyfluorfen (cotton); pendimethalin (soyabean); picloram (grassland); primisulfuron (maize); prometryn (cotton); pyridate (groundnuts); and vernolate (groundnuts) (Anon., 1998).
Hicks et al. (1998) show that a mixture of pyridate and 2,4-DB acts synergistically on S. obtusifolia without increased damage to groundnut. S. obtusifolia occurs in flushes, seedlings emerge after rainfall events, and few herbicides, including etribuzin, imazaquin, chlorimuron, flumetsulam, and glyphosate, provide adequate control and their efficacy can depend heavily on environmental conditions (Buehring et al., 2002).
References
Top of pageACTA, 1986a. Cassia obtusifolia L. In: Adventices Tropicales [Tropical Weeds]. Paris, France: ACTA-Publications
ACTA, 1986b. Cassia tora L. In: Adventices Tropicales [Tropical Weeds]. Paris, France: ACTA-Publications
Ambasta SSP (ed.), 1986. The Useful Plants of India. New Delhi, India: Publications and Information Directorate, Council of Scientific and Industrial Research.
Anon, unda. Recuentos cromosómicos del Paraguay. www.ub.es/botanica/cromopar/cro-in.pdf
Anon., 1998. Weed Control Manual, 31. Willoughby, Ohio, USA: Meister Publishing Company.
Barnes DE, Chan LG, 1990. Common Weeds of Malaysia and their Control. Kuala Lumpur, Malaysia: Ancom Berhad Persiaran Selangor
Bentham G, 1871. Revision of the genus Cassia. Transactions of the Linnaean Society, London, 27:503-591
Berhaut, J, 1967. Flore du Sénégal. Dakar, Sénégal: Clairafrique
Brenan JPM, 1967. Leguminosae subfamily Caesalpinioideae. In: Milne-Redhead E, Polhill RM, eds. Flora of Tropical East Africa. London, UK: Crown Agents for Oversea Governments and Administrations
Buchanan GA, Burns E, 1971. Weed competition in cotton: I Sicklepod and tall morningglory. Weed Science, 19:576-579
Debrot CEA, 1974. Casia tora L. huesped natural del virus del grabado del tabaco (tobacco etch virus) en Venezuela. Agronomia Tropical, 24:21-26
DeFilipps RA, Maina SL, Crepin J, 2004. Medicinal Plants of the Guianas (Guyana, Surinam, French Guiana). http://www.mnh.si.edu/biodiversity/bdg/medicinal
Department of Agronomy, 1968. Weeds found in cultivated land in Taiwan, Volume 2. Taipei, Taiwan: College of Agriculture, National Taiwan University
Doll J, Piedrahita W, Argel P, 1976. Capacidad germinativa de semilla de 32 especies de malezas. Revista COMALFI (Sociedad Colombiana de Malezas y Fisologia Vegetal), 3:82-93
Ewart A, 1908. On the longevity of seeds. Proceedings of the Royal Society Victoria, 21:1-210
Fosberg FR, Sachet M-H, Oliver R, 1979. A geographical checklist of the Micronesian Dicotyledonae. Micronesica, 15:1-295
Gonzalez G, Webb ME, 1989. Manual para la Identificacion y Control de Malezas. Santa Cruz, Bolivia: Centro Internacional de Agricultura Tropical
Haines HH, 1922. The botany of Bihar and Orissa. London, UK: Allard and Sons
Hoffmann BD, Andersen AN, Hill GJE, 1999. Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia (Berlin), 120:595-604
Holm L, Doll J, Holm E, Pancho J, Herberger J, 1997. World Weeds. Natural Histories and Distribution. New York, USA: John Wiley and Sons, Inc
Hutchinson J, Dalziel JM, 1958. Flora of West Tropical Africa, Vol. 1. Part 2, 2nd edition. London, UK: Crown Agents
Irwin HS, Barneby RC, 1982. The American Cassiinae. Memoirs of the New York Botanical Garden, 25:1-918
Irwin HS, Turner BL, 1960. Chromosomal relationships and taxonomic considerations in the genus Cassia. American Journal of Botany, 47:309-318
Joel DM, Liston A, 1986. New adventive weeds in Israel. Israel Journal of Botany, 35(3-4):215-223
Linnaeus C, 1753. Species Plantarum edition 1. Stockholm, Sweden
Mackey AP, Miller EN, Palmer WA, 1997. Sicklepod (Senna obtusifolia) in Queensland. Coorparoo, Australia: Department of Natural Resources
Mahmood TZ, 1987. Crop Weeds of Rawalpindi - Islamabad Area. Islamabad, Pakistan: National Agricultural Research Centre, Pakistan Agricultural Research Council
Martins SV, Ribeiro GA, da Silva WM, Nappo ME, 2002. Regeneração pós-fogo em um fragmento de floresta estacional semidecidual no Município de Viçosa, MG. Ciência Florestal, 12:11-19
Minh-Si H, 1969. Weeds in South Vietnam. Saigon, Vietnam: Agricultural Research Institute, Ministry of Land Reform and Development of Agriculture and Fisheries
Miranda IS, Absy ML, Rebêlo GH, 2002. Community structure of woody plants of Roraima Savannahs, Brazil. Plant Ecolology, 164:109-123
Moody K, Munroe CE, Lubiga RT, Paller EC, 1984. Major Weeds of the Philippines. Los Banos, Philippines: Weed Science Society of the Philippines, University of the Philippines at Los Banos
Murray DS, Thurlow DL, Buchanan GA, 1976. Sicklepod in the Southeast. Weeds Today, 7:12-14
Murty V, 1962. Cassia tora L. leaf meal as a component of poultry rations. Poultry Science, 41:1026-1028
Müller-Schärer H, Scheepens PC, Greaves MP, 2000. Biological control of weeds in European crops: recent achievements and future work. Weed Research Oxford, 40(1): 83-98
Nickell LG, 1960. Antimicrobial activity of vascular plants. Economic Botany, 13:281-318
Ouren T, 1987. Soyabean adventitious weeds in Norway. Blyttia, 45(4):175-185
Parker C, 1992. Weeds of Bhutan. Weeds of Bhutan., vi + 236 pp
Patel RM, Patel CB, 1972. Factors contributing to the carryover of groundnut aphid (Aphis craccivora Koch) through the off-season in Gujurat. Indian Journal of Entomology, 33:404-410
Quisumbing E, 1951. Medicinal plants of the Philippines. Department of Agriculture and Commerce, Philippine Islands Technical Bulletin, 16:1-1234
Randall JM, 1997. Weed Alert! New Invasive Weeds in California. California Exotic Pest Plant Council 1997 Symposium Proceedings. http://ucce.ucdavis.edu/freeform/ceppc/documents/1997_Symposium_Proceedings1946.PDF
Randell BR, 1988. Revision of the Cassiinae in Australia. I. Senn sect. Chamaefistula. Journal of the Adelaide Botanic Garden, 11:19-49
Recasens J, Conesa JA, 1995. New adventitious weeds in the irrigated crops of Catalonia. Proceedings of the 1995 Congress of the Spanish Weed Science Society, Huesca, Spain. Madrid, Spain: Sociedad Espanola de Malherbologia, 59-65
Research Division, undated. Weeds of the Solomon Islands and their Control. Honiara, Solomon Islands: Research Division, Ministry of Agriculture and Lands
Robertson, SA, 1989. Flowering Plants of Seychelles. Kew, UK: Royal Botanic Gardens
Singh J, 1969. Growth performance and dry matter yield of Cassia tora L. as influenced by population density. Journal of the Indian Botanical Society, 48:141-148
Staples GW, Imada CT, Herbst DR, 2003. New Hawaiian plant records for 2001. Bishop Museum Occasional Papers, 74:7-21
Terry PJ, 1981. Weeds and their control in the Gambia. Tropical Pest Management, 27(1):44-52
Thulin M, 1989. Fabaceae. In: Hedberg I, Edwards S, eds. Flora of Ethiopia, Volume 3. Pittosporaceae to Araliaceae. Addis Abbaba, Ethiopia/Uppsala University, Sweden: National Herbarium, 97-251
Thurlow DL, Buchanan GA, 1972. Competition of sicklepod with soybeans. Weed Science, 20(4):379-384
Turner BC, Karlander EP, 1975. Photoperiodic control of floral initiation in sicklepod (Cassia obtusifolia L.). Botanical Gazette, 136(1):1-4
Tye A, Soria MC, Gardener MR, 2003. A strategy for Galapagos weeds. In: Veitch CR, Clout MN, eds. Turning the tide: the eradication of invasive species. Proceedings of the International Conference on eradication of island invasives. Gland, Switzerland: IUCN - The World Conservation Union, 336-341
Vos P, 2004. Case studies on the status of invasive woody plant species in the Western Indian Ocean. 2. The Comoros Archipelago (Union of the Comoros and Mayotte). Forest Health & Biodiversity Working Papers FBS/4-2E. Rome, Italy: FAO
Weakley AS, undated. Flora of the Carolinas and Virginia. http://www.herbarium.unc.edu/weakley_flora
Wells MJ, Balsinhas AA, Joffe H, Engelbrecht VM, Harding G, Stirton CH, 1986. A catalogue of problem plants in South Africa. Memoirs of the botanical survey of South Africa No 53. Pretoria, South Africa: Botanical Research Institute
Wit HCD de, 1955. A revision of the genus Cassia as occurring in Malaysia. Webbia, 11:197-292
Distribution References
Barnes DE, Chan LG, 1990. Common Weeds of Malaysia and their Control., Kuala Lumpur, Malaysia: Ancom Berhad Persiaran Selangor.
Brenan JPM, 1967. Leguminosae subfamily Caesalpinioideae. In: Flora of Tropical East Africa, [ed. by Milne-Redhead E, Polhill RM]. London, UK: Crown Agents for Oversea Governments and Administrations.
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
DeFilipps RA, Maina SL, Crepin J, 2004. Medicinal Plants of the Guianas (Guyana, Surinam, French Guiana)., http://www.mnh.si.edu/biodiversity/bdg/medicinal
Department of Agronomy, 1968. Weeds found in cultivated land in Taiwan., 2 Taipei, Taiwan: College of Agriculture, National Taiwan University.
Gonzalez G, Webb ME, 1989. (Manual para la Identificacion y Control de Malezas)., Santa Cruz, Bolivia: Centro Internacional de Agricultura Tropical.
Hutchinson J, Dalziel JM, 1958. Flora of West Tropical Africa., 1 (2nd) London, UK: Crown Agents.
Mackey AP, Miller EN, Palmer WA, 1997. Sicklepod (Senna obtusifolia) in Queensland., Coorparoo, Australia: Department of Natural Resources.
Mahmood TZ, 1987. Crop Weeds of Rawalpindi - Islamabad Area., Islamabad, Pakistan: National Agricultural Research Centre, Pakistan Agricultural Research Council.
Martins SV, Ribeiro GA, da Silva WM, Nappo ME, 2002. (Regeneração pós-fogo em um fragmento de floresta estacional semidecidual no Município de Viçosa, MG). In: Ciência Florestal, 12 11-19.
Minh-Si H, 1969. Weeds in South Vietnam., Saigon, Vietnam: Agricultural Research Institute, Ministry of Land Reform and Development of Agriculture and Fisheries.
Miranda IS, Absy ML, Rebêlo GH, 2002. Community structure of woody plants of Roraima Savannahs, Brazil. In: Plant Ecolology, 164 109-123.
Moody K, Munroe CE, Lubiga RT, Paller EC, 1984. Major Weeds of the Philippines., Los Banos, Philippines: Weed Science Society of the Philippines, University of the Philippines at Los Banos.
Parker C, 1992. Weeds of Bhutan. Thimphu, Bhutan: National Plant Protection Centre. vi + 236 pp.
Randall JM, 1997. Weed Alert! New Invasive Weeds in California. [California Exotic Pest Plant Council 1997 Symposium Proceedings], http://ucce.ucdavis.edu/freeform/ceppc/documents/1997_Symposium_Proceedings1946.PDF
Staples GW, Imada CT, Herbst DR, 2003. New Hawaiian plant records for 2001. In: Bishop Museum Occasional Papers, 74 7-21.
Terry P J, 1981. Weeds and their control in the Gambia. Tropical Pest Management. 27 (1), 44-52.
Thulin M, 1989. Fabaceae. In: Flora of Ethiopia, 3 [ed. by Hedberg I, Edwards S]. Addis Abbaba, Ethiopia/Uppsala University, Sweden: National Herbarium. 97-251.
Vos P, 2004. Case studies on the status of invasive woody plant species in the Western Indian Ocean. 2. The Comoros Archipelago (Union of the Comoros and Mayotte). In: Forest Health & Biodiversity Working Papers FBS/4-2E, Rome, Italy: FAO.
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Global register of Introduced and Invasive species (GRIIS) | http://griis.org/ | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/