Hevea brasiliensis (rubber)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Biology and Ecology
- Latitude/Altitude Ranges
- Air Temperature
- Rainfall
- Rainfall Regime
- Soil Tolerances
- Uses
- Uses List
- Wood Products
- Bibliography
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.
Preferred Common Name
- rubber
Other Scientific Names
- Siphonia brasiliensis Willd. ex A. Juss.
International Common Names
- English: Para rubber
- Spanish: caucho; hevea; hule; jebe; siringa
- French: arbre a caoutchouc; caoutchouc; caoutchouc de Para; hévéa
- Arabic: lastik barâ
- Portuguese: seringueira
Local Common Names
- Brunei Darussalam: kayu getah; kayu keret; pokok getah para
- Cambodia: kausuu
- Germany: Heveakautschukbaum; Parakautschukbaum
- Indonesia: karet; kayu getah; kayu keret; pokok getah para
- Italy: albero del caucciu; evea
- Laos: jaang
- Malaysia: getah asli; kayu getah; kayu keret; pokok getah para
- Myanmar: kyetpaung
- Netherlands: Rubberboom
- Sweden: brasilianskt Gummitraed
- Thailand: yang phara
- Vietnam: cao su
EPPO code
- HVEBR (Hevea brasiliensis)
Summary of Invasiveness
Top of pageThe following summary is from Witt and Luke (2017):
Description
Large evergreen tree (to 40 m tall) with a straight trunk (50 cm in diameter), branching at top to form a dense canopy.
Origin
Bolivia, Brazil, Colombia, Peru and Venezuela.
Reason for Introduction
Timber and rubber.
Invades
Roadsides, disturbed areas and forest gaps/edges.
Impacts
Introduced as a plantation crop, it has escaped cultivation and established dense stands, to the possible detriment of native plant and animal species.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Euphorbiales
- Family: Euphorbiaceae
- Genus: Hevea
- Species: Hevea brasiliensis
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageDistribution
Top of pageNatural rubber was first introduced into South-East Asia from the Neotropics in 1876. Early attempts to encourage its planting were not well received. However, with the arrival and expansion of the motor car industry and the increased demand for natural rubber, it soon grew into an important plantation crop in a number of tropical and subtropical countries. Today, rubber is grown in Malaysia, Indonesia, Thailand, Sri Lanka, Vietnam and China in Asia, as well as Cote d'Ivoire, Nigeria, Cameroon, Liberia and Gabon in Africa. In South America, particularly in Brazil, despite the massive opening up of new land for rubber cultivation, production continues to be hampered by the major leaf disease South American leaf blight (Microcyclus ulei).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 25 Feb 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Planted | Reference | Notes |
---|---|---|---|---|---|---|---|---|
Africa |
||||||||
Cameroon | Present | Natural rubber production (2008) 52,000 MT (F) | ||||||
Central African Republic | Present | Natural rubber production (2008) 1,000 MT (F) | ||||||
Congo, Republic of the | Present | Natural rubber production (2008) 1,350 MT (F) | ||||||
Côte d'Ivoire | Present | Natural rubber production (2008) 188,532 MT (F) | ||||||
Gabon | Present | Natural rubber production (2008) 12,000 MT (F) | ||||||
Ghana | Present | Natural rubber production (2008) 13,500 MT (*) | ||||||
Guinea | Present | Natural rubber production (2008) 13,900 MT (*) | ||||||
Guinea-Bissau | Present | Natural rubber production (2008) 0 MT (M) | ||||||
Liberia | Present | Natural rubber production (2008) 81,000 MT (*) | ||||||
Mali | Present | Natural rubber production (2008) 0 MT (M) | ||||||
Nigeria | Present | Natural rubber production (2008) 143,000 MT (F) | ||||||
Sierra Leone | Present | Planted | ||||||
Tanzania | Present | Introduced | Naturalized | Naturalized | ||||
Uganda | Present | Planted | ||||||
Asia |
||||||||
Bangladesh | Present | Natural rubber production (2008) 5,300 MT (F) | ||||||
Brunei | Present | Natural rubber production (2008) 220 MT (F) | ||||||
Cambodia | Present | Natural rubber production (2008) 31,676 MT | ||||||
China | Present | Natural rubber production (2008) 565,000 MT (F) | ||||||
India | Present | Natural rubber production (2008) 819,000 MT (F) | ||||||
-Andaman and Nicobar Islands | Present | Planted | ||||||
-Assam | Present | Planted | ||||||
-Karnataka | Present | Planted | ||||||
-Kerala | Present | Planted | ||||||
-Tamil Nadu | Present | Planted | ||||||
Indonesia | Present | Natural rubber production (2008) 2,921,872 MT | ||||||
-Irian Jaya | Present | Planted | ||||||
-Java | Present | Planted | ||||||
-Maluku Islands | Present | Planted | ||||||
-Sulawesi | Present | Planted | ||||||
-Sumatra | Present | Planted | ||||||
Malaysia | Present | Natural rubber production (2008) 1,072,400 MT | ||||||
-Peninsular Malaysia | Present | Planted | ||||||
-Sabah | Present | Planted | ||||||
-Sarawak | Present | Planted | ||||||
Myanmar | Present | Natural rubber production (2008) 45,000 MT (F) | ||||||
Philippines | Present | Natural rubber production (2008) 411,044 MT | ||||||
Singapore | Present | Natural rubber production (2008) 0 MT (M) | ||||||
Sri Lanka | Present | Natural rubber production (2008) 129,240 MT | ||||||
Thailand | Present | Natural rubber production (2008) 3,193,213 MT | ||||||
Vietnam | Present | Natural rubber production (2008) 659,600 MT | ||||||
North America |
||||||||
Costa Rica | Present | Natural rubber production (2008) 0 MT (M) | ||||||
Dominican Republic | Present | Natural rubber production (2008) 12 MT (F) | ||||||
Guatemala | Present | Natural rubber production (2008) 70,000 MT (F) | ||||||
Mexico | Present | Natural rubber production (2008) 27,709 MT (F) | ||||||
Trinidad and Tobago | Present | |||||||
Oceania |
||||||||
Papua New Guinea | Present | Natural rubber production (2008) 4,700 MT (F) | ||||||
South America |
||||||||
Bolivia | Present | Natural rubber production (2008) 12,000 MT (F) | ||||||
Brazil | Present | Natural rubber production (2008) 114,000 MT (F) | ||||||
-Acre | Present | |||||||
-Alagoas | Present | |||||||
-Amapa | Present | |||||||
-Amazonas | Present | |||||||
-Bahia | Present | |||||||
-Ceara | Present | |||||||
-Espirito Santo | Present | |||||||
-Fernando de Noronha | Present | |||||||
-Goias | Present | |||||||
-Maranhao | Present | |||||||
-Mato Grosso | Present | |||||||
-Mato Grosso do Sul | Present | |||||||
-Minas Gerais | Present | |||||||
-Para | Present | |||||||
-Paraiba | Present | |||||||
-Parana | Present | |||||||
-Pernambuco | Present | |||||||
-Piaui | Present | |||||||
-Rio de Janeiro | Present | |||||||
-Rio Grande do Norte | Present | |||||||
-Rio Grande do Sul | Present | |||||||
-Rondonia | Present | |||||||
-Roraima | Present | |||||||
-Santa Catarina | Present | |||||||
-Sao Paulo | Present | |||||||
-Sergipe | Present | |||||||
Colombia | Present | Natural rubber production (2008) 0 MT (M) | ||||||
Ecuador | Present | Natural rubber production (2008) 13,750 MT (F) | ||||||
Paraguay | Present | |||||||
Peru | Present | Natural rubber production (2008) 0 MT (M) | ||||||
Uruguay | Present | |||||||
Venezuela | Present |
Biology and Ecology
Top of pageGermination of seeds usually takes place 7-10 days after sowing. Seedlings and buddings exhibit growth periodicity. Terminal buds of main stems produce long internodes with leaves clustered towards the end of them. The shoot pushes out vertically, slowly for 2-3 days, then rapidly before tailing off for 1-2 days. The energy for growth is then diverted into leaf development. Leaf petioles and leaf blades show the same kind of growth as the shoot, but the blades go on growing for 3-4 days longer than the petioles. When their growth ceases, the blades change colour from dark reddish to light green, and continue to droop. During the next stage the leaves rise to the horizontal position after which they become dark green. A complete cycle takes about 36 days, 18 for extension growth and 18 for leaf development. Subsequent growth proceeds in similar cycles, and as the plant grows, the leaves appear in whorls.
Branching begins about 1 year after sowing, depending on the clone. The more vigorous clones branch early whereas the less vigorous can take up to a year. The branches appear sequentially and the number ranges from 4-8 in one storey. They emerge from axillary buds. One-year-old seedlings may already be 2.5 m tall. After the first year of growth, the plants will then go through a phase of rapid vegetative growth for the next 4 years before they start flowering and fruiting.
After branching, girth development starts and growth periodicity is less pronounced. Girth development decreases when trees are tapped. To prevent wind damage a rather short tree with a symmetrical crown starting about 3 m above ground level is preferred. When trees reach a certain age they partly or completely shed their leaves, usually once a year. The intensity of leaf shedding, usually called wintering, depends on climatic conditions and varies with clone. A dry period of 1 month or longer causes partial or complete leaf fall. This causes a drop in latex production especially during refoliation. Along with new leaves, flowers are produced. Both self- and cross-pollination are carried out by small insects. Self-incompatibility occurs in some clones. Only a small proportion of female flowers set fruit and afterwards many of the fruitlets are shed. Even with hand pollination no more than five of the pollinated female flowers develop into mature fruit. This development takes about 5 months. Seeds are viable only for a few days. Storage in sealed containers with damp sawdust can extend the viability period to 1 month.
Ecology
Rubber is a crop of the lowland tropics grown between 6°N and 6°S. Attempts to cultivate rubber as far south as the Sao Paolo region in Brazil and as far north as Mexico and Guangdong Province in China have met with some degree of success. The optimum day temperature is 26-28°C. Preferably rubber should not be planted at altitudes above 400-500 m because the low ambient temperature retards girth growth, delays tapping, and reduces latex production.
The annual rainfall requirement ranges from 2000 to 3000 mm with 170-200 rainy days. A well-distributed annual rainfall of 1500 mm is considered the lower limit for commercial production. In Indonesia, the best areas for rubber production have annual rainfall totals as high as 400 mm. In high rainfall areas, soils should have good internal drainage. A large number of rainy days, especially with rain in the morning, is undesirable because it disrupts the tapping schedule. Rubber can also tolerate a 2-3 month drought period in some areas. A dry period of 1 month or longer causes partial or complete leaf fall. Wind is an important factor because it may snap trunks and branches.
Owing to its extensive root system rubber needs a well-drained, root-penetrable soil, at least 1 m deep with an adequate moisture storage capacity. Temporary waterlogging with flowing water causes little damage. It can be grown in soils ranging from sandy to red lateritic and yellow podzols, young volcanic soils, alluvial clays and peat soil. Rubber is less demanding in terms of soil fertility and topography than other tree crops such as oil palm and cocoa, and is often planted on land which is not suitable for these crops.
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
12 | -35 | 0 | 450 |
Air Temperature
Top of pageParameter | Lower limit | Upper limit |
---|---|---|
Absolute minimum temperature (ºC) | 10 | |
Mean annual temperature (ºC) | 26 | 27 |
Mean maximum temperature of hottest month (ºC) | 24 | 33 |
Mean minimum temperature of coldest month (ºC) | 20 | 32 |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Dry season duration | 0 | 3 | number of consecutive months with <40 mm rainfall |
Mean annual rainfall | 1500 | 3600 | mm; lower/upper limits |
Uses
Top of pageThe main users of natural raw rubber are tyre manufacturers who consume 60-70% of the total world volume of natural rubber produced. The balance is divided among manufacturers of rubber car components (for example, producing engine mountings, bushes, weather strips, V-belts, hoses and joint rings), manufacturers of engineering components (building mounts, anti-vibration mounts, dock fenders, flooring and high-quality sheeting), and manufacturers of consumer products (such as footwear, sports goods, toys, gloves, latex threads, catheters, swimming caps and condoms).
When felled for replanting, the rubber tree is also sawn to give rubber wood (timber). With proper treatment, it can be used for high-value-added products like furniture, particleboeard, parquet flooring and many other wood products. Rubber wood can also be converted into fuel charcoal.
Seeds contain a semi-drying oil that can be used in making paints and soap and has some potential as a local fuel.
Uses List
Top of pageEnvironmental
- Agroforestry
- Revegetation
Fuels
- Charcoal
Materials
- Carved material
- Essential oils
- Rubber/latex
- Wood/timber
Wood Products
Top of pageCharcoal
Containers
- Crates
- Pallets
Sawn or hewn building timbers
- Carpentry/joinery (exterior/interior)
- Flooring
- For light construction
- Wall panelling
Wood residues
Wood-based materials
- Fibreboard
- Flakeboard
- Laminated veneer lumber
- Laminated wood
- Medium density fibreboard
- Particleboard
- Wood cement
Woodware
- Industrial and domestic woodware
- Tool handles
Bibliography
Top of pageACIAR, 1985. Smallholder rubber production and policies. Proceedings of an international workshop held at the University of Adelaide, South Australia, 18-20 February 1985. ACIAR Proceedings series, 9.
Azwar R, Sumarmadji, Haris U, Basuki, 1993. Intercrops in smallholder rubber-based farming system. Indonesian Agricultural Research and Development Journal, 15(3):45-51.
Charrier A, Jacquot M, Hamon S, Nicolas D, 1997. Tropical plant breeding. Montpellier, France: CIRAD-SAR.
Compagnon P, 1986. Le caoutchouc naturel. Paris, France: Maisonneuve & Larose.
D'Auzac J, 1998. From sucrose to rubber: Hevea as a "green rubber factory". In: Symposium on natural rubber (Hevea brasiliensis). Volume 1. General, soils and fertilization, and breeding and selection sessions, Ho Chi Minh City, Vietnam, 14-15 October 1997. Brickendonbury, UK: International Rubber Research and Development Board (IRRDB), 10-23.
Dijkman MJ, 1951. Hevea: thirty years of research in the Far East. Coral Gables, Florida, USA: University of Miami Press.
Dove MR, 1993. Smallholder rubber and swidden agriculture in Borneo: a sustainable adaptation to the ecology and economy of the tropical forest. Economic Botany, 47(2): 36-147.
Esekhade TU, Ugwa IK, AigbekaenEO, 1996. Suitability and economic viability of intercropping in rubber on acid sandy soil of Southern Nigeria. Indian Journal of Natural Rubber Research, 9(1):36-39.
Godon P, Nguyen Gia Quoc, 1997. Systems of intercropping rubber and cashew. Agriculture et Developpement, 15:169-174.
MTIB, 1986. Malaysian Rubberwood, a beautiful and versatile timber. Kuala Lumpur, Malaysia: Malaysian Timber Industry Board.
Ng KF, Stur WW, Shelton HM, 1977. New forage species for integration of sheep in rubber plantations. Journal of Agricultural Science, 128(3):347-355.
Ong SH, Mohd Noor AG, Tan AM, Tan H, 1983. New Hevea germplasm - its introduction and potential. In: Proceedings RRIM Planters' Conference. Kuala Lumpur, Malaysia.
Ong SH, Othman R, Benong M, 1998. Breeding and selection of clonal genotypes for climatic stress conditions. Symposium on natural rubber (Hevea brasiliensis). Volume 1. General, soils and fertilization, and breeding and selection sessions, Ho Chi Minh City, Vietnam, 14-15 October 1997. Brickendonbury, UK: International Rubber Research and Development Board, 149-154.
Pee TY, Ani Bin Arope, 1976. Rubber owners' manual. Kuala Lumpur, Malaysia: Rubber Research Institute of Malaysia.
Pinniam N, Weber KE, Tomita M, 1993. Reforestation through the establishment of small scale rubber plantations in northeast Thailand. Japanese Journal of Tropical Agriculture, 37(3):171-178.
Ray SK, Mathew J, 1990. Structural changes and developments in the rural rubber economy of India. Administrator, 35(3):65-73.
Roux P le et al., 1991. The Golden Forests: Report of an anthropological, socioeconomic and technical survey on rubber plantations in the Provinces of Patani, Yala, Narathiwat and Songkla (Southern Thailand): April 1988 to December 1989: Part 1: General Report. Patani, Thailand.
RRIM, 1998. Annual report 1997. Kuala Lumpur, Malaysia; Rubber Research Institute of Malaysia.
RRIM, 1998. Symposium on natural rubber (Hevea brasiliensis). Volume I. General, soils and fertilization, and breeding and selection sessions, Ho Minh City, Vietnam, 14-15 October 1997. Brickendonbury, UK: International Rubber Research and Development Board.
Samat MSA, Shelton HM, Mullen BF, Shelton HM, 1995. Biological modelling of rubber and forage productivity. ACIAR, Australia. Integration of ruminants into plantation systems in southeast Asia: Proceedings of a workshop at Lake Toba, North Sumatra, Indonesia, 9 13 September 1994. ACIAR Proceedings, 64:72-78.
Tan AG, Mohd Ali Sujan, 1981. Rubber wood for furniture manufacture. Planter (Kuala Lumpur), 57:649 655.
Tan Hong, 1987. Strategies in rubber tree breeding. In: Abott AJ, Atkin RK, eds. Improving vegetatively propagated crops. London, UK: Academic Press.
Webster CC, Baulkwell WJ, 1989. Rubber. UK: Longman Scientific and Technical.
Wessel M, 1988. Hevea (in English). In: Rehm S, ed. Handbuch der Landwirtschaft und Ernährung in den Entwicklungsländern. 2. Aufl. Band 4. Specieller Pflanzenbau in den Tropen und Subtropen. Stuttgart, Germany: Verlag Eugen Ulmer.
References
Top of pageAlbaladejo JL, 1997. The potential of rubberwood. Tropical Forest Update, 7(4):9-10
Appanah S, 1995. Plantation forestry: its prospects in Malaysia. Wallaceana, No. 76, 7-12; 10 ref
Arokiaraj P, Jones H, Jaafar H, Coomber S, Charlwood BV, 1996. Agrobacterium-mediated transformation of Hevea anther calli and their regeneration into plantlets. Journal of Natural Rubber Research, 11(2):77-87
Carron MP, Dea BG, Tison J, Leconte A, Keli J, 1997. Field growth of Hevea brasiliensis clones produced by in vitro culture. Plantations, Recherche, Developpement, 4(4):264-273
Clement-Demange A, Chapuset T, Legnate H, Costes E, Doumbia A, Obouayeba S, Nicolas D 1995. Wind damage: the possibilities of an integrated research for improving the prevention of risks and the resistance of clones in the rubber tree. Symposium on physiological and molecular aspects of the breeding of Hevea brasiliensis, Penang, Malaysia, 6-7 November, 1995:182-199
Kliwon S, Iskandar MI, Sutigno P, 1992. The effect of veneer preservation with BFCA compound on the bonding strength of plywood made from rubberwood (Hevea brasiliensis). [Pengaruh pengawetan venir dengan senyawa BFCA terhadap keteguhan rekat kayu lapis dari kayu karet (Hevea brasiliensis).] Jurnal Penelitian Hasil Hutan, 10(3):97-101; English tables; 8 ref
Lim SunHeng, Leong LyneChing, 1996. The socio-economic impact of planting tropical timber species with plantation technology - agro-forestry. Planter, 72(849): 669-673. Paper presented at the Conference on Tropical Forests and Timber `96 organized by the Centre for Management Technology on 18-19 July, 1996 in Singapore
Malaysia, Malaysian Rubber Research and Development Board, 1995. 1995 Annual report. 1995, publ. 1996, 71 pp.; many col. pl
Medrado MJS, Appezzato-da-Gloria B, Costa JD, 1995. Anatomical changes in rubber tree (Hevea brasiliensis clone RRIM 600) cuttings in response to different rooting techniques. Scientia Agricola, 52(1):89-95
Nurhayati T, 1994. Trial of the use of hot gas produced by rubber wood [Hevea brasiliensis] burning in the gasifier-combustor for cacao seed drying. [Uji coba penggunaan gas panas dari tungku gasifikasi kayu karet untuk pengeringan biji coklat.] Jurnal Penelitian Hasil Hutan, 12(5):164-168; English figures and tables.; 5 ref
Pelacani CR, de Oliveira LEM, Soares AM, Cruz JL, 1995. Water relations of some forest species under flooded environment. Revista Arvore, 19(4): 548-558
Priyani Seneviratne, Nugawela A, Samarakoon SMA, Seneviratne P, 1996. Deep planting for better performance. Bulletin of the Rubber Research Institute of Sri Lanka, 340:43-48
Purseglove JW, 1968. Tropical crops: dicotyledons 1 & 2. Longmans, London. pp. xiv + viii + 719
Rivano F, 1997. South American leaf blight of Hevea I. Variability of Microcyclus ulei pathogenicity. Plantations, Recherche, Developpement, 4(2):104-114
Seneviratne P, 1996. Branch induction for better growth. Bulletin of the Rubber Research Institute of Sri Lanka, 34:36-42
Seneviratne P, 1996. Tissue culture for rubber. Bulletin of the Rubber Research Institute of Sri Lanka, 34:26-31
Thankamma L, Marattukalam JG, Joseph A, Potty SN, 1995. Pink disease of rubber can be prevented. Rubber Board Bulletin, 279(2):35-38
Wong EeDing, Razali AK, Kawai S, Wong ED, 1996. Properties of rubberwood LVL reinforced with Acacia veneers. Wood Research, No. 83:8-16
Yi Peng T, Mat Don M, Ujang S, 2011. Assessment of the properties, utilization, and preservation of rubberwood (Hevea brasiliensis): a case study in Malaysia. Journal of Wood Science, 57(4):255-266
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
FAO, 2009. FAOSTAT Database., Rome, Italy: FAO. http://www.fao.org/faostat/en/#home
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/