Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Galium aparine
(cleavers)

Toolbox

Datasheet

Galium aparine (cleavers)

Summary

  • Last modified
  • 16 November 2021
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Galium aparine
  • Preferred Common Name
  • cleavers
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    Compendia
    CAB International
    Wallingford
    Oxfordshire
    OX10 8DE
    UK
    compend@cabi.org
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Identity

Top of page

Preferred Scientific Name

  • Galium aparine L.

Preferred Common Name

  • cleavers

International Common Names

  • English: catchweed bedstraw; goose grass; harrif; robin run over the hedge
  • Spanish: amor de hortelano; apegalos; espunyidella; lapa
  • French: gaillet grateron; Gaillet gratteron; galium grateron
  • Portuguese: amor-de-hortelao

Local Common Names

  • Brazil: pagamaco
  • Chile: lengua de gato
  • Denmark: burre-snerre
  • Germany: Klebern; Klebkraut; Kletten- Labkraut; Kletterndes Labkraut
  • Italy: aparine; attacca-mani; attacca-veste; caglio aparine
  • Japan: yaemugura
  • Netherlands: kleefruid
  • Norway: klengemaure
  • Sweden: snaerjmaara; snärj gräs
  • Tunisia: gaillet grat
  • USA: bedstraw; catchweed; scratch-grass
  • Yugoslavia (Serbia and Montenegro): divlji broc

EPPO code

  • GALAP (Galium aparine)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Gentianales
  •                         Family: Rubiaceae
  •                             Genus: Galium
  •                                 Species: Galium aparine

Notes on Taxonomy and Nomenclature

Top of page
Galium aparine is the universally accepted name for this common and widespread species. Moore (1975) recognizes two forms, G. aparine forma aparine and G. aparine forma intermedium and distinguishes between them on the basis of differences in the structure of the fruiting bodies. Chromosome numbers ranging from 2n = 22 to 2n = 88 have been reported, with 64 and 66 being the most common. The base number n = 11 (Malik and van den Born, 1988).

Description

Top of page
G. aparine is a slender, annual herb with branched roots. Cotyledons are petioled, ovate, usually notched at the apex, slightly rough above, 8-15 mm long and 6-9 mm broad.

The stems are green, soft, freely branched, numerous, weak, straggly and semiprostrate. They may be up to 120 cm long. G. aparine climbs or ascends by adhering to or lying on adjacent vegetation. Stems are quadrangular in cross-section, with prominent ribs, densely set with recurved thorn-like spines. They are jointed and branched at the first node. The nodes are usually densely tomentose, but sometimes only slightly so.

The leaves are sessile in whorls of 4-8 at the nodes. They are simple, narrow, oval-lanceolate, mucronate, single-veined, 30-60 mm long, 3-8 mm broad, usually dark green, thin, lax and mucronate. The leaf margins are weakly retrosely scabrous. The upper surface of the leaf is hairy and the lower surface has a row of forward directed spines along the midrib.

The flowers are 2 mm in diameter on peduncles in the axils of the leaf whorls. There are two to five flowers per peduncle (five to six bracts), in cymes. The corolla is white with four acute lobes. The flowers are bisexual, with four stamens and one pistil with two styles. The pollen grains are oval in equatorial view and the polar diameter (width) of the hexaploid plant is 25-31 µm.

The fruit is a schizocarp with two capsules per flower forming two globose mericarps. The fruits are grey or greyish-brown and oval in outline. They are 2-4 mm long, excluding the spines, with the scar somewhat oblong. The surfaces of the fruit are covered with hooked bristles, about 0.8 mm long, on tuberculate bases that are dilated and usually arise from a small tubercle formed by the elevation of the surface of the fruit. Fruits are sometimes sparsely spiny and very rarely smooth or tuberculate.

Distribution

Top of page
G. aparine is a common weed in temperate zones on all continents, but is restricted to higher altitudes in the tropics (Holm et al., 1977). In Europe, it occurs from Portugal in the west to Russia in the east, and from the UK in the north to Italy in the south. It occurs in Alaska, extending across the wheat belt of Canada and throughout the USA. It is a problem weed in Argentina, Chile and Uruguay and in Asia it extends from Pakistan to China and from Japan to New Zealand. It is less common in Africa where it is a weed of cereals in Tunisia and is found at higher altitudes in Ethiopia.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 10 Feb 2022
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

EthiopiaPresent
RéunionPresentIntroduced1978
TunisiaPresent, Widespread

Asia

AfghanistanPresent
BhutanPresentIntroduced1783
ChinaPresent
-HenanPresent
Hong KongPresent
India
-PunjabPresent
IsraelPresent
JapanPresent, Widespread
North KoreaPresent
PakistanPresent
TurkeyPresent

Europe

BelgiumPresent, Widespread
BulgariaPresent
CzechiaPresent
Federal Republic of YugoslaviaPresent
FinlandPresent
FrancePresent, Widespread
GermanyPresent, Widespread
GreecePresent, Widespread
HungaryPresent
IcelandPresentIntroduced1889
ItalyPresent, Widespread
NorwayPresent
PolandPresent
PortugalPresent
-AzoresPresentIntroduced1838
RomaniaPresentOriginal citation: Gradila (2017)
RussiaPresentIntroduced1892
SpainPresent
Svalbard and Jan MayenPresentIntroduced1897
SwedenPresent, Widespread
SwitzerlandPresent
United KingdomPresent, Widespread

North America

CanadaPresent
-OntarioPresent
United StatesPresent
-AlaskaPresent
-HawaiiPresentIntroduced2007

Oceania

AustraliaPresentIntroduced1850
-South AustraliaPresent
-VictoriaPresent
-Western AustraliaPresent
New ZealandPresent

South America

ArgentinaPresent
BrazilPresent
ChilePresentIntroduced1848
UruguayPresent

Habitat

Top of page
G. aparine grows in a wide range of situations but thrives in moist habitats (Holm et al., 1977). It prefers nutrient-rich soils, but has been reported on sandy, loam, loess and heavy organic soils (Holm et al., 1977; Malik and van den Born, 1988). The closely related G. spurium (false cleavers) thrives in relatively dry and sunny habitats and does not tolerate shade (Moore, 1975; Malik and van den Born, 1984).
Habitat

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial

Hosts/Species Affected

Top of page
G. aparine is found on a wide range of crops as well as in meadows, pastures, rich woodlands, thickets, hedgerows, seashores, waste ground and along fence rows.

Biology and Ecology

Top of page
G. aparine is an annual herb that reproduces solely by seed. It behaves predominantly as a winter annual, and has been described as one of the most winter hardy weeds of winter-sown crops in Germany. In Japan, germination and emergence occurred between mid-November and February, with a peak in December, approximately 40 days after initial germination (Noda et al., 1965). In some years, a second flush of germination was observed in late February or March. This protracted germination periodicity helps G. aparine to escape herbicide treatments. In Canada, flowering begins in late May and is completed by mid-June, with mature fruits present from late June to mid-July (Moore, 1975). In some instances, flowering plants have been collected as late as August and September. In the UK, some emergence was observed in the field as late as April and May (Froud-Williams et al., 1984). Flowers are self-compatible and self-pollinated, each giving rise to two seeds. On average, one plant produces 300-400 seeds (Hanf, 1983).

Much research on the germination requirements for G. aparine is contradictory. Seed dormancy patterns vary greatly between populations, with hedgerow populations showing less dormancy than those in arable fields (Froud-Williams, 1985). In Sweden, freshly harvested seeds exhibited little innate dormancy, but germination occurred most readily in darkness (Sjostedt, 1959). Hirinda (1959) reported 50-76% germination in the dark, compared with 0-4% in light and 39-50% in intermediate conditions. Ueki and Shimizu (1970) showed that germination was enhanced by 5-10 minutes of light compared with continuous darkness. Various other techniques for breaking dormancy were tested (scarification, puncturing, soaking in enzymes, kinetin, thiourea or nitrate solutions), but soaking in 1000 p.p.m. gibberellic acid was the only treatment that resulted in an increase in germinability. Froud-Williams (1985) reported that seed germination was enhanced by nitrate, and that, in general, germination was promoted by light. He also found that hedgerow populations germinated over a wider range of temperatures (5-20°C) than field populations (5-15°C). Soil pH has little effect on germination (Holm et al., 1977).

Seeds of G. aparine buried in the soil display cyclical changes in dormancy, they lose dormancy in the autumn and re-acquire it in the spring so that seeds are dormant in the summer months. Dormancy was released again in the late summer to early autumn (Froud-Williams, 1985).

Numerous studies have examined the ability of G. aparine seeds to emerge from depth. Noda et al. (1965) reported that the maximum number of seeds emerged from a depth of 8-15 mm, and that the greatest depth was 33 mm. Hirinda (1959) reports the optimum depth of emergence as 2-5 cm. Other authors have reported the maximum depth from which seeds are capable of emerging as 4-20 cm (Kurth, 1967; Tsuruuchi, 1971). These variations probably depend on soil type. Holm et al. (1977) report that seeds are unable to emerge from 4 cm in a heavy, firm soil, but in light soils will emerge 7-12 days after being sown at a depth of 10 cm.

Brenchley and Warington (1930), in long-term field trials in the UK, indicated that the longevity of G. aparine seeds in the soil is usually less than 2 years. Holm et al. (1977) reported viability in soils in Germany as being limited to 2-3 years.

Seeds may be dispersed by wind, water, animals, farm machinery or as contaminants of crop seed. The hooked bristles on the fruits and seeds provide a mechanism for attachment to animal fur, feathers or human clothes and bags. The fruits also have a hollow space near to the point of attachment between the two halves, which enables them to float on water. In the Canadian prairie provinces, the planting of rapeseed contaminated with G. aparine seed is the principal means of spread (Malik and van den Born, 1988). G. aparine may also be spread with contaminated straw and manure and during the movement of harvesting machinery.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Aceria galioba Parasite
Cecidophyes galii Parasite
Halidamia affinis Herbivore
Puccinia difformis Pathogen
Puccinia punctata Pathogen
Schizomyia galiorum Parasite Plants|Inflorescence
Sermylassa halensis Herbivore

Notes on Natural Enemies

Top of page
Batra (1984) surveyed the natural enemies of Galium spp. in North America and Eurasia. Schizomyia galiorum and Dasyneura aparines form galls on the flower buds of Galium spp. and prevent fruit formation. The gall-forming eriophyid mite Cecidophyes galii reduces seed production by 30-40%. Larvae of the tenthredinid, Halidamia affinis also feed on G. aparine.

A leaf spot disease caused by Cercospora galii, leaf and stem spots caused by Pseudopeziza rapanda and Septoria aparine, and stem spots caused by Rhabdospora galiorum have also been noted on G. aparine.

Impact

Top of page
Holm et al. (1991) described G. aparine as a serious or principal weed in 10 countries. Worldwide it has been reported as a weed of 19 crops in 31 countries (Holm et al., 1977). Although the weed commonly occurs in vegetable crops, beets, pastures, vineyards and plantation crops, it is most troublesome in cereals, where it may cause large yield reductions, interfere with harvesting, cause lodging, and in some instances smother the entire crop.

G. aparine is resistant to phenoxyacetic acid herbicides, and their widespread use, particularly in cereals, before the introduction of sulfonylureas was largely responsible for the increase in G. aparine seen in many European countries (Rola, 1969; Bachthaler and Dancau, 1970; Pawlowski and Wszolek, 1978; Malik and van den Born, 1988). Holm et al. (1977) noted that one-third of drained winter paddy fields in Japan were dominated by cleavers.

In cereals, Rola (1969) reported potential yield reductions of 30-60%. From 1981 to 1989, Roder et al. (1990) found the yield decline caused by one G. aparine plant/m² was 0.24% in winter barley and 0.14% in winter wheat. Similar research, in the UK, found much higher reductions in wheat ranging from 0.7 to 2.9% per plant/m², total losses were 0.8-4.9 tonnes/ha (Wilson and Wright, 1987). Trials in Turkey estimated economic thresholds for the control of G. aparine as 0.7-2.1 plants/m² (Uygur and Mennan, 1996).

As well as severely reducing yield, G. aparine has other economically important effects. Water-soluble extracts of G. aparine contain substances that have allelopathic effects on oak seedlings (Mateev and Timoteev, 1965). Galium spp. also produce anthraquinones which are toxic to mammals and may cause skin irritation (Batra, 1984) and may have a diuretic effect when ingested by livestock (Long, 1960).

G. aparine also acts as an alternative host to a range of crop pathogens. These include the oat race of stem eelworm (Ditylenchus dispaci), stem and bulb eelworm (Anguillulina dispaci), Aphelenchoides fragariae, the potato aphid (Macrosiphum solanifolii) and Macrosiphum miscanthi (Malik and van den Born, 1988). Other authors have reported beet mosaic potyvirus (Katis et al., 1997), beet western yellows virus (Chod et al., 1997), petunia asteroid mosaic tombusvirus (Fuchs et al., 1994) and Mycocentrospora acerina (Hermansen, 1992). Turaev and Khurramov (1981) reported 10 species of parasitic nematodes infecting G. aparine in Russia.

Uses

Top of page
The fruits of G. aparine may be used as a substitute for coffee and are used as such in Sweden (Long, 1960). The whole plant may be macerated and used either as an infusion to make a tea substitute or fed to poultry. The flowers serve as a food source for a number of beneficial insects. Extracts from adult plants may be used as a flavouring for food or wine (Batra, 1984).

Uses List

Top of page

Animal feed, fodder, forage

  • Fodder/animal feed

Human food and beverage

  • Beverage base

Medicinal, pharmaceutical

  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page
G. aparine may be confused with G. spurium which is closely related to it. However, G. spurium may be distinguished by the following characteristics. Its cotyledons are smaller than those of G. aparine being 5-10 mm long and 2-4 mm broad. The leaves of G. spurium are linear, 12-62 mm long and 2.5-6 mm wide, always notched at the apex, a lighter green, stiff and more 'sticky' than the leaves of G. aparine. The stems of G. spurium reach up to 200 cm, and are stiffer, rougher and more branched than those of G. aparine. The base number of chromosomes in G. spurium is n = 10.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

G. aparine is a severe weed of early sown winter cereals established under minimal or no tillage cultivation regimes. Buhr et al. (1977) reported that continuous bare ploughing for 6 years completely eradicated the weed. There is no evidence to suggest, however, that G. aparine is directly benefited by direct drilling (Froud-Williams, 1985). Field trials indicate that one-third more seeds may emerge following tine cultivation than after direct drilling (Schwerdtle, 1971), and it is believed that this is a result of greater soil aeration following harrowing.

Field trials in winter wheat in Germany demonstrated that tine harrowing following sowing and establishment of the crop successfully controlled G. aparine. Two cultivations, one at the tillering stage of wheat and a second at the end of shooting resulted in up to 79% control, and was equally effective as applying bromoxynil. Where only a single cultivation was applied, harrowing at the end of shooting was more effective than at the tillering stage (Steinmann and Gerowitt, 1994). In trials in the UK, cultivating with a flexible tine harrow in the autumn reduced the dry weight of G. aparine from 102 to 22-98 g/m². Despite a thinning in the wheat crop, yields were not affected (Wilson et al., 1993).

G. aparine is a vigorously competitive weed and its vegetative growth responds to increased nitrogen fertilization more effectively than does that of winter wheat (Wright and Wilson, 1992). In glasshouse trials, the effect of G. aparine on wheat yield increased as the nitrogen input increased (Baylis and Watkinson, 1991). Where it is permitted, straw burning can provide an effective means of control, by killing up to 90% of seeds on the soil surface (Froud-Williams, 1985).

For control of G. aparine in paddy fields, Ueki (1965) recommended flooding the fields, deep cultivation, use of a straw mulch, crop rotation or herbicide applications.

Chemical Control

G. aparine is resistant to phenoxyacetic acid herbicides, and the widespread use of these compounds in cereal crops before the introduction of sulfonylureas has been blamed for the spread of G. aparine in Europe (Rola, 1969; Bachthaler and Dancau, 1970; Lovegrove et al., 1985) and North America (O'Sullivan, 1983). Orson (1985) states that the species is not easily controlled by herbicides.

In UK trials, Lovegrove et al. (1985) assessed the efficacy of a range of pre- and post-emergence herbicides for the control of G. aparine. They found that pre-emergence applications of pendimethalin, trifluralin with linuron and bifenox with linuron gave inadequate control. Post-emergence applications of mecoprop in February or March resulted in 70% control of cleavers, but when mixed with ioxynil and bromoxynil, cyanazine or bifenox, control was greatly improved. They concluded that the most reliable control is achieved with post-emergent mixtures that include mecoprop.

A great deal of research has been conducted since the mid 1980s to establish herbicides and herbicide mixtures that will adequately and reliably control G. aparine.

In Germany, Snel and Scorer (1986) achieved adequate control of G. aparine with post-emergence applications of fluroxypyr. In trials in winter wheat, dichlorprop alone and mixed with bentazone gave excellent control of heavy infestations of G. aparine, resulting in 12-14% increases in 1000 grain weight (Hoffmann and Pallutt, 1989).

In Italy, Catizone and Viggiani (1990) achieved satisfactory levels of control with post-emergence mixtures of clopyralid plus MCPA plus mecoprop and ioxynil plus mecoprop. Cyanazine plus MCPA reduced seed germination but not weed biomass.

In the UK, applications of amidosulfuron made between the seedling stage in mid-February and the formation of flower buds in May gave excellent control of G. aparine (90-100%) (D'Souza et al., 1993). The same authors reported 83-100 and 86-90% control with fluroxypyr and macoprop-P, respectively.

In winter oilseed rape in Poland, applications of metazachlor plus quinmerac 3 days after sowing gave 90-100% control of weed populations which included G. aparine (Adamczewski and Stachecki, 1994).

Biological Control

Although efforts have been made to discover host-specific natural enemies of G. aparine, there is no reference in the literature to attempts to introduce these species in biological control programmes.

Studies have been conducted to establish potential biological control agents for Galium spp. Pavlinec (1992) searched for phytophages of G. aparine in areas around Berne, Switzerland. Only three oligophages were found. Larvae of the tenthredinid, Halidamia affinis were found at a number of sites, but their density and consumption rates were low. The chrysomelid, Sermylassa halensis occurred at four sites. S. halensis mainly attacks G. mollugo, but because of its tendency for complete defoliation it was thought to offer the best opportunities for biological control. The gall-forming eriophyid mite Cecidophyes galii was found in more than 50% of sites, and although it did not directly affect the viability of adult plants of G. aparine it did reduce seed production by 30-40%. Pavlinec suggested that the general paucity of insects feeding on G. aparine was a result of the production of insect-repellent chemicals.

Schizomyia galiorum forms galls on the flower buds of Galium spp. and prevents fruit formation. Dasyneura aparines also forms galls on G. aparine. Another European species that is relatively host-specific and demonstrates some potential for biocontrol is Aceria galiobia. Batra (1984) lists a number of pathogenic organisms that show some specificity towards Galium spp. including Puccinia punctata, P. punctata var. troglodytes and P. rubefaciens.

References

Top of page

Adamczewski K, Stachecki S, 1994. Evaluation of a new herbicide Butisan Star for control of cleaver (Galium aparine L.) in winter oilseed rape. Oilseed crops. 16th Polish research conference, 15(2):115-118.

Bachthaler G, Dancau B, 1970. Influence of production technique on the weed flora in sugarbeet, with particular regard to chemical weed control. In: Proceedings of the 2nd International for Selective Weed Control in Beet Crops, Rotterdam, Netherlands, 1:221-233.

Batra SWT, 1984. Phytophages and pollinators of Galium (Rubiaceae) in Eurasia and North America. Environmental Entomology, 13(4):1113-1124

Baylis JM, Watkinson AR, 1991. The effect of reduced nitrogen fertilizer inputs on the competitive effect of cleavers (Galium aparine) on wheat (Triticum aestivum). Proceedings of the Brighton Crop Protection Conference, Weeds, Vol. 1:129-134

Brenchley W, Warington K, 1930. The weed seed population of arable soil 1. Numerical estimation of viable seeds and observations on their natural dormancy. Journal of Ecology, 18:235-272.

Buhr L, Feyerabend G, Pallutt B, Becker HG, 1977. Position regarding the occurrence of bentgrass (Apera spica-venti (L.) P.B.) and cleavers (Galium aparine L.) as well as possibilities for their control. Nachrichtenblatt für den Pflanzenschutz in der DDR, 31(12):237-240

Catizone P, Viggiani P, 1990. Aspects of the biology and control of Galium aparine L. Symposium on integrated weed management in cereals. Proceedings of an EWRS symposium, Helsinki, Finland, 4-6 June 1990 Wageningen, Netherlands: European Weed Research Society, 421-428

Chod J, Chodovß D, Jokes M, 1997. Host and indicator plants of beet western yellows virus. Listy Cukrovarnicke^acute~ a R^hacek~epar^hacek~ske^acute~, 113(5):129-130; 4 ref.

D'Souza DSM, Black IA, Hewson RT, 1993. Amidosulfuron - a new sulfonylurea for the control of Galium aparine and other broad-leaved weeds in cereals. Brighton crop protection conference, weeds. Proceedings of an international conference, Brighton, UK, 22-25 November, 1993. Farnham, UK: British Crop Protection Council (BCPC), Vol. 2:567-572

Fazal Hadi, Muhammad Ibrar, 2015. Ecology of weeds in wheat crops of Kalash valley, district Chitral, Hindukush Range, Pakistan. Pakistan Journal of Weed Science Research, 21(3), 425-433. http://www.wssp.org.pk/vol-21-3-2015/11.%20PJWSR-06-2015.pdf

Froud-Williams RJ, 1985. The biology of cleavers (Galium aparine). Aspects of Applied Biology, 9:189-195

Froud-Williams RJ, Chancellor RJ, Drennan DSH, 1984. The effects of seed burial and soil disturbance on emergence and survival of arable weeds in relation to minimal cultivation. Journal of Applied Ecology, 21(2):629-641

Fuchs E, Gruntzig M, Auerbach I, Einecke I, Muller C, Kragenow M, 1994. On the occurrence of plant pathogenic viruses in waters in the region of Halle/Saale (German Federal State of Saxony-Anhalt). Archives of Phytopathology and Plant Protection, 29(2):133-141

Goerke, K., Schönhammer, A., Schulte, M., Gerowitt, B., 2007. Weeds in oilseed rape in Germany - status and assessment of changes. In: European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007 [European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007], [ed. by Fløistad, E.]. Doorwerth, Netherlands: European Weed Research Society. 198. http://www.ewrs-symposium2007.com

Gradila, M., 2017. Management of some noxious dicotyledonous weeds in rape crops in southern Romania., (No.Supplementum 9), 219-223. http://www.acta-zoologica-bulgarica.eu/downloads/acta-zoologica-bulgarica/2017/supplement-9-219-223.pdf

Hanf M, 1983. The arable weeds of Europe with their seedlings and seeds. Hadleigh, UK: BASF.

Hassannejad, S., Ghafarbi, S. P., 2014. Weed flora survey in alfalfa (Medicago sativa L.) fields of Shabestar (northwest of Iran). Archives of Agronomy and Soil Science, 60(7), 971-991. doi: 10.1080/03650340.2013.859383

Hermansen A, 1992. Weeds as hosts of Mycocentrospora acerina. Annals of Applied Biology, 121(3):679-686

Hirinda F, 1959. The biology and control of cleavers (Galium aparine L.).

Hofmann B, Pallutt B, 1989. Studies on the control of Galium aparine L. with SYS 67 Gebifan, SYS 67 Gebifan + Basagran as well as tank mixes of these herbicides with bercema-Bitosen N or ammonium nitrate with urea solution. Nachrichtenblatt für den Pflanzenschutz in der DDR, 43(9):180-183

Holm LG, Pancho JV, Herberger JP, Plucknett DL, 1991. A Geographic Atlas of World Weeds. Malabar, Florida, USA: Krieger Publishing Company.

Holm LG, Plucknett DL, Pancho JV, Herberger JP, 1977. The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA: University Press of Hawaii.

Katis NJ, Kokinis G, Eleftherohorinos I, Jones P, 1997. Arable weeds identified as new sources of beet mosaic potyvirus in Greece. Annals of Applied Biology, 130(2):255-260; 17 ref.

Khan, I., Marwat, K. B., Khan, I. A., Haidar Ali, Dawar, K., Khan, H., 2011. Invasive weeds of southern districts of Khyber Pakhtunkhwa-Pakistan. Pakistan Journal of Weed Science Research, 17(2), 161-174. http://www.wssp.org.pk/PJWSR-17-2-161-174.pdf

Kurth H, 1967. The germination behaviour of weeds. SYS Reporter, 3:6-11.

Kämpf, I., Hölzel, N., Kühling, I., Kiehl, K., 2016. Arable weed flora in the Western Siberian grain belt. In: Julius-Kühn-Archiv,(No.452) [ed. by Nordmeyer, H., Ulber, L.]. Quedlinburg, Germany: Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen. 76-83. http://pub.jki.bund.de/index.php/JKA/article/view/6209/5913

Long HC, 1960. Weeds of arable land. London, UK: Ministry of Agriculture and Fisheries, Bulletin 108.

Lovegrove AW, Lutman PJW, Thornton ME, 1985. Investigations into the control of cleavers (Galium aparine) with several pre- and post-emergence herbicides in winter cereals. Aspects of Applied Biology, 9:205-211

Malik N, Born WHVanden, 1984. False cleavers thrives on the prairies. Weeds Today, 15(4):12-14

Malik N, Born WHvanden, 1988. The biology of Canadian weeds. 86. Galium aparine L. and Galium spurium L. Canadian Journal of Plant Science, 68(2):481-499

Marwat, K. B., Zahid Hussain, Bakhtiar Gul, Muhammad Saeed, Siraj-ud-Din, 2006. Survey on weed problems in wheat crop in district Mardan. Pakistan Journal of Weed Science Research, 12(4), 353-358. http://wssp.org.pk/

Mateev MM, Timoteev PO, 1965. Effects of water soluble exudates of certain forest and forest weed species on one year old oak seedlings.

Milanova, S., Boneva, P., Grigorova, P., Valkova, M., 2007. Weed survey in central north Bulgaria. In: European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007 [European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007], [ed. by Fløistad, E.]. Doorwerth, Netherlands: European Weed Research Society. 217. http://www.ewrs-symposium2007.com

Moore RJ, 1975. The Galium aparine complex in Canada. Canadian Journal of Botany, 53(9):877-893

Moskova, T., Dimitrov, G., Tityanov, M., 2018. Distribution and degree of weed growth of amaranth and other weeds in sunflower crops in Plovdiv and Stara Zagora regions. Journal of Mountain Agriculture on the Balkans, 21(1), 158-168. http://www.rimsa.eu/images/forage_production_vol_21-1_part_2_2018.pdf

Noda K, Ibaraki D, Eguchi W, Ozawa K, 1965. Studies on ecological characteristics of the annual weed cleaver and its chemical control on drained paddy fields for wheat plants in temperate Japan. Bulletin of the Kushu Agricultural Experimental Station, 11:345-374.

Orson JH, 1985. Control of Galium aparine in cereals with herbicides - Agricultural Development and Advisory Service results, harvest years 1983 and 1984. Aspects of Applied Biology, 9:213-220

O'Sullivan PA, 1983. Selective control of false cleavers in rapeseed with benazolin. Canadian Journal of Plant Science, 63(2):497-501

Pavlinec M, 1992. The significance of phytophagous insects on Galium aparine (Rubiaceae) and other Galium species. Mitteilungen der Deutschen Gesellschaft fu^umlaut~r Allgemeine und Angewandte Entomologie, 8(1-3):169-173; 13 ref.

Pawlowski F, Wszolek M, 1978. Weediness of the summer barley and winter wheat grain on loess and chernozem soils in the Hrubieszow region. Roczniki Nauk Rolniczych, A, 103(2):131-145

Roder W, Eggert H, Kalamus A, 1990. Occurrence and detrimental effect of cleavers, Galium aparine L., in grain fields. Nachrichtenblatt Pflanzenschutz, 44(11):253-256

Rola J, 1969. Causes and effects of weed compensation in crops.

Schwerdtle F, 1971. Trials on direct-sowing methods in comparison with conventional cultivation of various crops with particular regard to the weed flora. KTBL Berichte uber Landtechnik, 149.

Shah, G. M., Khan, M. A., 2006. Checklist of noxious weeds of district Mansehra, Pakistan. Pakistan Journal of Weed Science Research, 12(3), 213-219. http://wssp.org.pk/

Shah, S. M., Asad Ullah, Fazal Hadi, 2014. Ecological characteristics of weed flora in the wheat crop of Mastuj valley, district Chitral, Khyber Pakhtunkhwa, Pakistan. Pakistan Journal of Weed Science Research, 20(4), 479-487. http://www.wssp.org.pk/vol-20-4-2014/6.%20PJWSR-22-2014.pdf

Sjostedt S, 1959. Germination biology of cleavers (Galium aparine L.). Vaxtodling, 10:87-105.

Snel M, Scorer DJ, 1986. Fluroxypyr, a flexible herbicide for control of Galium aparine in small grain cereals, an analysis of trial data collected in Germany during the 1984 and 1985 growing seasons. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 51(2a):409-420

Steinmann HH, Gerowitt B, 1994. Mechanical control of Galium aparine in winter wheat. In: Thomas JM. Maitrise des adventices par voie non chimique. Communications de la quatrieme conference internationale I.F.O.A.M., Dijon, France, 5-9 July, 1993. Quetigny Cedex, France: Association Colloque IFOAM, 2:273-277

Stobbs, L. W., Greig, N., Weaver, S., Shipp, L., Ferguson, G., 2009. The potential role of native weed species and bumble bees (Bombus impatiens) on the epidemiology of Pepino mosaic virus. Canadian Journal of Plant Pathology, 31(2), 254-261. http://www.tandfonline.com/doi/abs/10.1080/07060660909507599

Tahira, J. J., Khan, S. N., 2017. Diversity of weed flora in onion fields of Punjab, Pakistan. Pakistan Journal of Weed Science Research, 23(2), 245-253. http://www.wssp.org.pk/resources/images/paper/955QW1498306408.pdf

Tsuruuchi T, 1971. Studies on weeds in wheat and barley fields in Nagasaki Prefecture. 2. Some ecological characteristics and chemical control of ivy-leaved speedwell (Veronica hederifolia L.). Weed Research, Japan, 12:32-36

Turaev ET, Khurramov ShK, 1981. Parasitic nematodes of weeds and of the apple rhizospheres of the Surkhandarinsk region (USSR). Uzbekskii Biologicheskii Zhurnal, 1:56-60

Ueki K, 1965. Physiological and ecological studies on cleavers (G. aparine) control. PhD thesis. Kyoto, Japan: Kyoto University.

Ueki K, Shimizu N, 1970. Studies on the breaking of dormancy in barnyeard grass seeds. 1. The effects of some chemicals on the breaking of dormancy. Proceedings of the Crop Science Society of Japan, 38(2):261-272.

Uygur FN, Mennan H, 1996. A study on economic thresholds of Galium aparine L. and Bifora radians Bieb. in wheat fields in Samsum-Turkey. Seizie^grave~me confe^acute~rence du COLUMA. Journe^acute~es internationales sur la lutte contre les mauvaises herbes, Reims, France, 6-8 de^acute~cembre 1995. Tome 1., 347-354; 10 ref.

Wilson BJ, Wright KJ, 1987. Variability in the growth of cleavers (Galium aparine) and their effect on wheat yield. Proceedings 1987 British Crop Protection Conference, Weeds, Vol.3:1051-1058

Wilson BJ, Wright KJ, Butler RC, 1993. The effect of different frequencies of harrowing in the autumn or spring on winter wheat, and on the control of Stellaria media (L.) Vill., Galium aparine L. and Brassica napus L. Weed Research (Oxford), 33(6):501-506

Woźniak, A., 2020. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. International Journal of Plant Production, 14(1), 1-8. doi: 10.1007/s42106-019-00062-8

Wright KJ, Wilson BJ, 1992. Effects of nitrogen fertiliser on competition and seed production of Avena fatua and Galium aparine in winter wheat. Aspects of Applied Biology, 30:381-386

Distribution References

Bohren C, 2009. Neophytes and other environmental weeds disturb Swiss agriculture: Ambrosia, Solidago and Reynoutria. In: XIIIème Colloque International sur la Biologie des Mauvaises Herbes, Dijon, France, 8-10 Septembre 2009. Alfortville, France: Association Française de Protection des Plantes (AFPP). 422-433.

CABI, Undated. Compendium record. Wallingford, UK: CABI

Chatzivassiliou E K, Boubourakas I, Drossos E, Eleftherohorinos I, Jenser G, Peters D, Katis N I, 2001. Weeds in greenhouses and tobacco fields are differentially infected by Tomato spotted wilt virus and infested by its vector species. Plant Disease. 85 (1), 40-46. DOI:10.1094/PDIS.2001.85.1.40

Dąbkowska T, Sygulska P, 2013. Variations in weed flora and the degree of its transformation in ecological and extensive conventional cereal crops in selected habitats of the Beskid Wyspowy Mountains. Acta Agrobotanica. 66 (2), 123-136. DOI:10.5586/aa.2013.029

Fazal Hadi, Muhammad Ibrar, 2015. Ecology of weeds in wheat crops of Kalash valley, district Chitral, Hindukush Range, Pakistan. Pakistan Journal of Weed Science Research. 21 (3), 425-433. http://www.wssp.org.pk/vol-21-3-2015/11.%20PJWSR-06-2015.pdf

Goerke K, Schönhammer A, Schulte M, Gerowitt B, 2007. Weeds in oilseed rape in Germany - status and assessment of changes. In: European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007 [European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007.], [ed. by Fløistad E]. Doorwerth, Netherlands: European Weed Research Society. 198. http://www.ewrs-symposium2007.com

Holm L G, Pancho J V, Herberger J P, Plucknett D L, 1991. A geographic atlas of world weeds. Malabar, Florida, USA: Krieger Publishing Co. 391 pp.

Holm L G, Plucknett D L, Pancho J V, Herberger J P, 1977. The world's worst weeds. Distribution and biology. Honolulu, Hawaii, USA: University Press of Hawaii. 610 pp.

Kämpf I, Hölzel N, Kühling I, Kiehl K, 2016. Arable weed flora in the Western Siberian grain belt. In: Julius-Kühn-Archiv. [ed. by Nordmeyer H, Ulber L]. Quedlinburg, Germany: Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen. 76-83. http://pub.jki.bund.de/index.php/JKA/article/view/6209/5913

Khan I, Marwat K B, Khan I A, Haidar Ali, Dawar K, Khan H, 2011. Invasive weeds of southern districts of Khyber Pakhtunkhwa-Pakistan. Pakistan Journal of Weed Science Research. 17 (2), 161-174. http://www.wssp.org.pk/PJWSR-17-2-161-174.pdf

Marwat K B, Zahid Hussain, Bakhtiar Gul, Muhammad Saeed, Siraj-ud-Din, 2006. Survey on weed problems in wheat crop in district Mardan. Pakistan Journal of Weed Science Research. 12 (4), 353-358. http://wssp.org.pk/

Milanova S, Boneva P, Grigorova P, Valkova M, 2007. Weed survey in central north Bulgaria. In: European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007 [European Weed Research Society, 14th EWRS Symposium, Hamar, Norway, 17-21 June 2007.], [ed. by Fløistad E]. Doorwerth, Netherlands: European Weed Research Society. 217. http://www.ewrs-symposium2007.com

Moskova T, Dimitrov G, Tityanov M, 2018. Distribution and degree of weed growth of amaranth and other weeds in sunflower crops in Plovdiv and Stara Zagora regions. Journal of Mountain Agriculture on the Balkans. 21 (1), 158-168. http://www.rimsa.eu/images/forage_production_vol_21-1_part_2_2018.pdf

Pei D L, Zhu X Q, Xu Y Y, Li C W, 2017. First report of powdery mildew caused by Golovinomyces orontii on Galium aparine in China. Plant Disease. 101 (1), 251. http://apsjournals.apsnet.org/loi/pdis DOI:10.1094/pdis-06-16-0914-pdn

Seebens H, Blackburn T M, Dyer E E, Genovesi P, Hulme P E, Jeschke J M, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A (et al), 2017. No saturation in the accumulation of alien species worldwide. Nature Communications. 8 (2), 14435. http://www.nature.com/articles/ncomms14435

Shah G M, Khan M A, 2006. Checklist of noxious weeds of district Mansehra, Pakistan. Pakistan Journal of Weed Science Research. 12 (3), 213-219. http://wssp.org.pk/

Shah S M, Asad Ullah, Fazal Hadi, 2014. Ecological characteristics of weed flora in the wheat crop of Mastuj valley, district Chitral, Khyber Pakhtunkhwa, Pakistan. Pakistan Journal of Weed Science Research. 20 (4), 479-487. http://www.wssp.org.pk/vol-20-4-2014/6.%20PJWSR-22-2014.pdf

Stobbs L W, Greig N, Weaver S, Shipp L, Ferguson G, 2009. The potential role of native weed species and bumble bees (Bombus impatiens) on the epidemiology of Pepino mosaic virus. Canadian Journal of Plant Pathology. 31 (2), 254-261. http://www.tandfonline.com/doi/abs/10.1080/07060660909507599

Sultan M A, Ikram-ul-Haq, Khalid A N, Rukhsana Bajwa, 2006. Some uredinales from northern areas of Pakistan. Pakistan Journal of Botany. 38 (3), 837-841. http://www.pjbot.org

Svoboda J, Polák J, 2002. Distribution, variability and overwintering of zucchini yellow mosaic virus in the Czech Republic. Plant Protection Science. 38 (4), 125-130.

Tahira J J, Khan S N, 2017. Diversity of weed flora in onion fields of Punjab, Pakistan. Pakistan Journal of Weed Science Research. 23 (2), 245-253. http://www.wssp.org.pk/resources/images/paper/955QW1498306408.pdf

Woźniak A, 2020. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. International Journal of Plant Production. 14 (1), 1-8. DOI:10.1007/s42106-019-00062-8

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Select a dataset
Map Legends
  • CABI Summary Records
Map Filters
Extent
Invasive
Origin
Third party data sources: