Eclipta prostrata (eclipta)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Habitat
- Habitat List
- Biology and Ecology
- Notes on Natural Enemies
- Impact
- Uses List
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Eclipta prostrata (L.) L., 1771
Preferred Common Name
- eclipta
Other Scientific Names
- Eclipta alba (L.) Hassk., 1848
- Eclipta erecta L., 1771
- Eclipta longifolia DC.
- Eclipta parviflora DC.
- Eclipta thermalis DC.
- Eclipta zippeliana Bl.
- Verbesina alba L., 1753
- Verbesina prostrata L., 1753
International Common Names
- English: false daisy
- Spanish: hierba prieta; yerba-de-tago
- French: eclipte blanche
- Portuguese: erva-portao; verbesina
Local Common Names
- Brazil: erva-portão
- Germany: mehlblume
- Japan: takasaburo
EPPO code
- ECLAL (Eclipta alba)
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Asterales
- Family: Asteraceae
- Genus: Eclipta
- Species: Eclipta prostrata
Notes on Taxonomy and Nomenclature
Top of pageThe generic name Eclipta comes from the Greek "ekleipta", "to be deficient" referring to the absence of pappus on the achenes (Fernald, 1950). The specific name prostrata is from the Latin "prostratus" and refers to the prostrate growth habit (Radford, 1986).
The botanical name of E. prostrata has been in confusion since Linnaeus in 1753 simultaneously published the names Verbesina prostrata and Verbesina alba (IAPT, 1983). He described procumbent plants from the Old World as V. prostrata and erect plants from the new world as V. alba (Koyama and Boufford, 1981). In 1771, he transferred the genus Verbesina to Eclipta and changed the name of V. alba to Eclipta erecta. In 1848, Hasskarl reinstated the specific epithet alba and united these taxa under the name of Eclipta alba (L.) Hassk. (IAPT, 1972). The name was adopted by the 11th International Botanical Congress and was recorded as an example under Article 57 of the International Code of Botanical Nomenclature. However, Koyama and Boufford (1981) proposed that the example given under Article 57 be revised based on the priority of E. prostrata which was united by Roxburgh in 1832, predating Hasskarl by 16 years. The 13th International Botanical Congress held in 1981 adopted their proposal and revised the example under Article 57 (IAPT, 1983).
A recent paper from Japan suggests that there are two distinct types there, one with rounded achenes 2.9 mm across (R type) and the other with slender achenes 2.1 mm across (S type). While retaining the name E. prostrata (L.) L. for the complex, they apply the names E. thermalis Bunge (1833) to the R type and E. alba (L.) Hasskal. (1848) to the S type (Umemoto et al., 1998).
Description
Top of pageLeaves: opposite, simple, rough, dull green, ovate to oblong-lanceolate, 2-10 cm long, 1-3 cm wide, apex acute or blunt, base attenuate, margin entire or slightly serrate, pubescent, mostly sessile, the lower leaves sometimes short-petioled, basally swollen hairs on both surfaces, veins prominent.
Inflorescence: flower heads up to 1 cm in diameter, a cluster of sessile white flowers, in upper axils or terminal, solitary or two heads together. Peduncle, thickened at the top, variable in length, 0.5-7 cm long, hairy. Involucral bracts 5-6, green, ovate, in two rows, outer ones 4-6 mm long, inner ones usually shorter, prominent, hairy. Ray flowers marginal, pistillate, fertile, corolla white, ligulate, 2-3 mm long. Disk flowers numerous, central, perfect, fertile, corolla whitish, tubular, minute, 1.5-2 mm long. Stamens five, separated filaments, anthers coalesced to form a tube around the style.
Chromosome number: 2n = 22.
Seed: light-brown to black, laterally-flattened achenes, wedge-shaped, 2-3 mm long, 0.9 mm wide. Apex with short, usually white hairs that are easily broken off but two hornlike projections often remain, pappus absent. The rest of the achene is glabrous and covered with many small warts.
Seedling
Stems are pale green, rarely purple, with fine, small hairs. Primary or cotyledonary leaves appear spongy and are opposite, elliptical to egg shaped, with a smooth margin and often with short, pointed, randomly dispersed hairs on the lower side. True leaves are up to 6 mm long, 3 mm wide and opposite. Later leaves look like the first true leaves and have fine, translucent marginal hairs. They are up to 12 mm long and 5 mm wide, sessile, lanceolate or linear lanceolate and entire or shallowly toothed, and both surfaces are rough with scattered, stiff hairs (Zimdahl et al., 1989)
Distribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 25 Feb 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Angola | Present | ||||||
Côte d'Ivoire | Present | ||||||
Egypt | Present | ||||||
Ghana | Present | ||||||
Nigeria | Present | ||||||
South Africa | Present | ||||||
Sudan | Present | ||||||
Tanzania | Present | ||||||
Zimbabwe | Present | ||||||
Asia |
|||||||
Afghanistan | Present | ||||||
Bangladesh | Present | ||||||
Bhutan | Present | ||||||
China | Present, Widespread | ||||||
-Anhui | Present | ||||||
-Guangdong | Present | ||||||
Hong Kong | Present | ||||||
India | Present | ||||||
-Bihar | Present | ||||||
-Delhi | Present | ||||||
-Kerala | Present | ||||||
-Madhya Pradesh | Present | ||||||
-Maharashtra | Present | ||||||
-Odisha | Present | ||||||
-Rajasthan | Present | ||||||
-Uttar Pradesh | Present | ||||||
-Uttarakhand | Present | ||||||
-West Bengal | Present | ||||||
Indonesia | Present | ||||||
Iraq | Present | ||||||
Japan | Present | ||||||
-Honshu | Present | ||||||
-Kyushu | Present | ||||||
-Ryukyu Islands | Present | ||||||
-Shikoku | Present | ||||||
Malaysia | Present | ||||||
-Peninsular Malaysia | Present | ||||||
North Korea | Present | ||||||
Pakistan | Present | ||||||
Philippines | Present | ||||||
Saudi Arabia | Present | ||||||
South Korea | Present | ||||||
Sri Lanka | Present | ||||||
Taiwan | Present | ||||||
Thailand | Present | ||||||
Vietnam | Present | ||||||
Europe |
|||||||
France | Present | ||||||
Italy | Present | Original citation: Tutin, 1976 | |||||
Montenegro | Present | ||||||
Portugal | Present | ||||||
Russia | Present | ||||||
North America |
|||||||
Costa Rica | Present | ||||||
Cuba | Present | ||||||
Dominican Republic | Present | Original citation: Kranz et al. (1977) | |||||
Mexico | Present | ||||||
Panama | Present | ||||||
Puerto Rico | Present | ||||||
Trinidad and Tobago | Present | ||||||
United States | Present | ||||||
-Arkansas | Present | Original citation: Jordan et al., 1993b | |||||
-Connecticut | Present | ||||||
-Florida | Present | ||||||
-Georgia | Present | ||||||
-Hawaii | Present | ||||||
-Illinois | Present | ||||||
-Indiana | Present | ||||||
-Iowa | Present | ||||||
-Kansas | Present | ||||||
-Kentucky | Present | ||||||
-Louisiana | Present | ||||||
-Maryland | Present | ||||||
-Massachusetts | Present | ||||||
-Michigan | Present | ||||||
-Minnesota | Present | ||||||
-Mississippi | Present | ||||||
-Missouri | Present | ||||||
-Nebraska | Present | ||||||
-New York | Present | ||||||
-North Carolina | Present | ||||||
-Ohio | Present | ||||||
-Oklahoma | Present | ||||||
-Pennsylvania | Present | ||||||
-Rhode Island | Present | ||||||
-South Carolina | Present | ||||||
-Tennessee | Present | ||||||
-Texas | Present | ||||||
-Virginia | Present | ||||||
-West Virginia | Present | ||||||
-Wisconsin | Present | ||||||
Oceania |
|||||||
Australia | Present | ||||||
Fiji | Present | ||||||
New Zealand | Present | ||||||
Samoa | Present | ||||||
South America |
|||||||
Argentina | Present | ||||||
Brazil | Present, Widespread | ||||||
-Maranhao | Present | ||||||
-Sao Paulo | Present | ||||||
Colombia | Present | ||||||
Peru | Present | ||||||
Suriname | Present |
Habitat
Top of pageBiology and Ecology
Top of pageGarcia (1931) reported that seeds of E. prostrata failed to germinate when the moisture content of the germinating medium was as low as, or lower than, 30% saturation. As the moisture content increased, there was a corresponding increase in the percentage germination. According to Vongsaroj (1991), field capacity is ideal for germination of E. prostrata. E. prostrata is more sensitive to moisture stress than rice (Lee and Moody, 1988a).
Achenes of E. prostrata show no pronounced innate dormancy (Ramakrishnan, 1960; Lee and Moody, 1988b) (both ripe and unripe seeds germinate - Gupta, 1992). Germination is not affected by pH (Lee and Moody, 1988a) nor water quality (Gupta, 1992).
However, light is required for the germination of seeds of many weed species including E. prostrata. Lee and Moody (1988a) reported that there was no germination of E. prostrata achenes in the dark or when they were exposed to green, blue or far-red light, but germination under red and yellow light was as good as that under white light. In an upland soil, 74% of the achenes planted on the soil surface germinated, 18.5% emerged when planted 0.2 cm deep, and no emergence was observed at planting depths of 0.5 cm or greater. Under flooded conditions (2 or 5 cm deep), about 9% of the achenes germinated when planted on the soil surface and no emergence was observed when the planting depth was 0.2 cm or greater. Lee and Moody (1988a) noted that no germination of E. prostrata achenes occurred in the absence of oxygen.
Germination of E. prostrata is also significantly improved by alternating temperatures (Lee and Moody, 1988a). At a constant temperature of 35°C, 78% of the achenes germinated whereas at alternating temperatures of 35/20°C with a 12-h thermoperiod, there was 96.5% germination. Germination of E. prostrata achenes is also influenced by the duration of illumination after absorption of water. Ten hours' illumination was needed for maximum germination and 2 h for 50% germination. There was no germination with exposure to light for 30 min or less (Lee and Moody, 1988a).
Flowering of E. prostrata started during the fifth week after emergence, and mature achenes were produced from the sixth week (Lee and Moody, 1988b). Usually 10-14 days were required for the achenes to mature. About 200 inflorescences and 14 000 achenes were produced per plant. (Seed weight: 0.292 mg/seed - Pancho and Kim, 1985).
Weber et al. (1995) reported that as soil fertility declined in maize-based cropping systems with a high frequency of cereal cropping and a low frequency of cereal cropping in the northern Guinea savanna in Nigeria, E. prostrata became a more important component of the weed flora. Oka (1988) also reported that E. prostrata benefitted from the impact of environmental stresses at a coastal site subject to saline winds following the destruction of a windbreak forest. E. prostrata is tolerant of highly polluted places (Rao et al., 1983) and has high salt adaptability (Choudhuri and Varshney, 1975; Varshney and Sharma, 1979). Lee and Moody (1988a) reported that there was 81.5% germination of E. prostrata achenes in 0.8% NaCl solution and 13.5% germination in 1.6% NaCl solution.
E. prostrata is reported to be a host of rice sheath blight Rhizoctonia solani [Thanatephorus cucumeris] (Kardin et al., 1977; Kannaiyan and Prasad, 1980); Sclerotinia blight of groundnut, Sclerotinia minor (Melouk et al., 1992); dry root rot of chickpea, Macrophomina phaseolina (Singh et al., 1990); and tobacco necrosis satellivirus which also causes tulip necrotic disease (Nahata and Kusaba, 1979).
E. prostrata is an alternative host of Amsacta moorei which also feeds on newly emerged sorghum and castor bean (Ricinus communis) (Agarwal et al., 1989) and of the girdle beetle, Oberea [Obereopsis] brevis (Shrivastava et al., 1989).
It is an alternative host of the root-knot nematodes Meloidogyne incognita (Soerjani et al., 1987) and M. graminicola (Rao et al., 1970); the ring nematode Criconemella onoenis; Tylenchorhynchus claytoni (Satyanarayana Prasad et al., 1980); the rice root nematode Hirschmanniella oryzae (Mathur and Prasad, 1973); and the corn cyst nematode Heterodera zeae (Parihar et al., 1991).
Variability
In Japan, Umemoto et al. (1987a) reported two types of E. prostrata based on morphological differences of their leaves and achenes. These variations were attributed to the soil moisture conditions in the different habitats. Photoperiodic flowering response was approximately related to the latitudinal differences in the habitats and was not related to morphological differences. Strains collected from Honshu did not flower under 16 h daylength (qualitative short-day response) whereas those collected from Okinawa flowered in the same number of days both under natural daylength and long daylength (quantitative short-day response). One strain collected from Taiwan showed a day-neutral response (Umemoto et al., 1987b).
Lee and Moody (1989a) collected 14 ecotypes of E. prostrata from different habitats in the Philippines. There were differences in growth type and leaf characteristics, reproductive characteristics, and morphological characters among ecotypes. Using cluster analysis, the 14 ecotypes were classified into four groups, lowlands, uplands, mountainous roadsides, and high altitudes and specific soils. The ecotypes from the mountainous roadsides had the largest shoot weight and produced the largest leaves. The upland ecotypes had serrate leaf margins and the highest achene production. The ecotype from the saline soil had the smallest and the thickest leaves; that from high altitude was a short plant with high achene production.
Dissimilarities among the ecotypes did not necessarily correspond with their geographical habitats. For example, the Tarlac ecotype was similar to those from the lowlands despite the fact that it was from an upland habitat, while the Iloilo ecotype was similar to those from the mountainous roadsides although it was from a lowland area.
Thus E. prostrata has a high dispersability and a high adaptability to changing environmental conditions. Ecotypic variations may be an adaptation response to differences in geographical, edaphic, climatic and biotic factors.
Notes on Natural Enemies
Top of pageImpact
Top of pageE. prostrata is a weed of bananas in Taiwan and the USA (Hawaii); of barley in Bangladesh; cotton in India, Thailand and the USA (Arkansas); flax in Taiwan; groundnut in Indonesia, Malaysia, Myanmar, Philippines, Thailand, USA (Oklahoma, Virginia) and Vietnam; lawns in the USA (Hawaii); maize in Indonesia, Malaysia, Myanmar, Taiwan, Thailand, Philippines and Vietnam; onion in the Philippines; pastures in Western Samoa; pawpaws in the USA (Hawaii); sisal in Angola; sorghum in Indonesia, Malaysia, Myanmar, Philippines, Taiwan, Thailand and Vietnam; soyabeans in India, Indonesia, Malaysia, Myanmar, Philippines, Taiwan, Thailand and Vietnam; sugarcane in Angola, India, Indonesia, Peru, Taiwan, Trinidad and the USA (Hawaii); tobacco in Indonesia, Malaysia, Myanmar, Philippines, Thailand and Vietnam; tomatoes in the USA (Florida); and vegetables in Indonesia, Philippines and the USA.
In South and South-East Asia, E. prostrata has been reported as a weed of upland rice in India, Indonesia, Philippines and Vietnam, of dry-seeded rice in India, Philippines, Sri Lanka and Thailand, of wet-seeded rice (sprouted seeds sown on puddled soil) in India, Philippines, Sri Lanka, Thailand and Vietnam, and of transplanted rice in Bangladesh, India, Malaysia, Philippines, Thailand and Vietnam. It has also been reported as occurring in rice seedling nurseries in India, Philippines and Vietnam, and in tidal swamp rice in Indonesia (Moody, 1989).
It is also a weed of rice in the Dominican Republic, Japan, Taiwan, Portugal and the USA. In Taiwan, annual weeds, including E. prostrata, have decreased greatly in paddy fields to which herbicides have been continually applied (Horng, 1976).
In drill-seeded rice in Arkansas, a linear equation expressed the relationship between rice cv. Newbonnet grain yield and duration of E. prostrata competition. Season-long competition of 13 plants/m² reduced rice yield by 10% (Smith, 1988b).
Lee and Moody (1989b) conducted an experiment to evaluate season-long competition between upland rice and 40 E. prostrata plants/m² at different fertilizer levels in the 1987 dry and wet seasons in the Philippines. In both seasons, yield reduction due to E. prostrata competition was approximately the same (0.7 t/ha) irrespective of nitrogen level. However, percentage yield loss decreased from 40 to 20% in the dry season and from 63 to 32% in the wet season, as the amount of nitrogen applied increased from 0 to 90 kg/ha. Thus, nitrogen addition partly overcame the competitive effect of the weed. The amount of nitrogen lost due to weed competition ranged from 28 to 34 kg/ha in the dry season and 34 to 44 kg/ha in the wet season.
In the Orient, E. prostrata is used medicinally, internally as a purgative, externally for skin diseases (Neal, 1965). It is consumed as a vegetable (Soerjani et al., 1987). Shadiza (1993) observed significant differences in the mineral content of healthy leaves, and leaves infected with unspecified pathogens. In the Philippines, it is used for animal feed (Moody and Elliot, 1984).
A decoction of the plant yields a blue-black dye. This is used in India, often mixed with coconut oil, to dye the hair and prevent hair loss. It is also used for tattooing. A decoction of the leaves is used in India to encourage the growth of hair on new-born children (Usher, 1974).
Rao and Prakasa Rao (1979) reported that root and shoot extracts of E. prostrata caused considerable mortality of brown planthopper (Nilaparvata lugens) adults. Prasad and Rao (1979) found that extracts of the roots or shoots of E. prostrata were toxic to the larvae of the root-knot nematode Meloidogyne graminicola; the shoot extract being more toxic than the root extract.
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
IntroductionEarly control is necessary to prevent competition from this rapidly growing weed (Kranz et al., 1977). In drill-seeded rice in Arkansas, it did not compete with rice during the early season but lowered grain yields when competing with rice during mid- to late-season (60-120 days after emergence). Thus, control by mid-season is essential to prevent yield losses (Smith, 1988b).
Cultural Control
Germination and growth of E. prostrata in lowland rice are suppressed by flooding for 3-4 weeks after planting. Lee and Moody (1988b) reported that seedling growth of E. prostrata was greatly reduced when flooding occurred at or before the four-leaf stage. Flooding at the four-leaf stage resulted in a 53% reduction in plant height compared to the unflooded control. In contrast, seedlings flooded at the six-leaf stage were 51% taller than those in the unflooded control at 40 days after emergence. Seedlings at the six-leaf stage, which appears to be a critical stage, or older became acclimatized and persisted under flooded conditions. Garcia (1931) noted that seedlings 2.5 cm tall were quite resistant to flooding. Singh et al. (1983) reported that submergence of E. prostrata at the vegetative stage with 90 cm water for 4 days caused defoliation of all of the leaves except the terminal leaf; E. prostrata at the flowering stage was unaffected by submergence.
E. prostrata is easily controlled by hand pulling and cultivation. Vigorously growing lawn grass soon causes its disappearance from ornamental turf (Pope, 1968).
Chemical Control
E. prostrata is susceptible to paraquat (Madrid et al., 1972), 2,4-D, oxadiazon (Terry, 1983), fenoxaprop-ethyl, thiobencarb + fenoxaprop-ethyl, propanil + lactofen (Khodayari and Smith, 1985), thiobencarb + fenoxaprop, propanil + esprocarb, propanil + fenoxaprop (Smith, 1988a), bentazone + quinclorac (Sabri Gamil Ahmed et al., 1989), molinate + 2,4-D (Srinivasan and Pothiraj, 1989), imazethapyr (Wilcut et al., 1991), acifluorfen + bentazone, lactofen (Jordan et al., 1993a), clomazone + fluometuron, clomazone + pendimethalin + fluometuron (Jordan et al., 1993b), anilofos + 2,4-D (Rao, 1995), rimsulfuron (Bewick et al., 1995) and ethalfluralin (Grichar and Porteous, 1996). It is moderately resistant to butachlor, fluorodifen (superseded), thiobencarb (Terry, 1983) and trifluralin (Madrid et al., 1972). Ampong-Nyarko and de Datta (1991) also indicate resistance to fenoxaprop and piperophos; moderate resistance to butachlor, fluorodifen (superseded), oxadiazon, propanil and thiobencarb; and susceptibility to bentazone, 2,4-D, MCPA, glyphosate, oxyfluorfen and paraquat. Contradictory results have been reported as to its level of susceptibility to atrazine and its level of resistance to propanil (Madrid et al., 1972; Terry, 1983).
References
Top of pageAnon., 1992. Important crops of the world and their weeds, 2nd ed. Leverkusen, Germany: Bayer.
Choudhuri GN; Varshney SP, 1975. Ecological differentiation in Eclipta alba Hassk. Tropical Ecology, 15:9-13.
Fernald ML, 1950. Gray's Manual of Botany. 8th Ed. New York, USA: American.
Garcia MB, 1931. Weeds in rice paddies: Germination of seeds and resistance of the young plants to submergence in water. Philippine Agriculturalist, 20:217-231.
Kardin MK; Kajiwara T; Muchsin M, 1977. Weed species infected by Rhizoctonia solani. In: Laporan Kemajuan Penelitian Seri Hama/Penyakit No. 8. Bogor, Indonesia: Central Research Institute for Agriculture.
Khodayari K; Smith Jr RJ, 1985. Performance of fenoxaprop-ethyl and selected herbicides for weed control in dry-seeded rice. Proceedings of the 38th Annual Meeting of the Southern Weed Science Society.
Koyama H; Boufford DE, 1981. Proposal to change one of the examples in Article 57. Taxon, 30:504-505.
Lee HK; Moody K, 1988a. Germination and emergence of Eclipta prostrata (L.) L. Korean Journal of Weed Science, 8:299-308.
Lee HK; Moody K, 1988b. Seed viability and growth characteristics of Eclipta prostrata (L.) L. Korean Journal of Weed Science, 8:309-316.
Madrid Jr MT; Punzalan FL; Lubigan RT, 1972. Some common weeds and their control. College, Laguna, Philippines: Weed Science Society of the Philippines.
Mamun AA, 1989. Agro-ecological studies of weed in Bangladesh. JSARD Publication No. 14. Dhaka, Bangladesh: Japan International Cooperation Agency.
Misra BN; Narsimha K; Singh KN; Gautam KC, 1990. Studies on weed flora, weed dynamics and their control under different methods of rice culture. Abstracts of Papers, Biennial Conference of Indian Society of Weed Science, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalapur, India, 1990, 10.
Moody K; Castin EM; Estorninos; Jr LE, 1994. Natural enemies of some weeds in the Philippines. Philippine Journal of Weed Science Special Issue, 45-63.
Moody K; Elliot PC, 1984. The use of rice-field weeds for animal feed. In: Report of the Crop-livestock Systems Research Monitoring Tour, Philippines and Thailand. Los Ba±os, Laguna, Philippines: International Rice Research Institute, 52-64.
Moody K; Munroe CE; Lubigan RT; Paller Jr EC, 1984. Major Weeds of the Philippines. College, Laguna, Philippines: Weed Science Society of the Philippines.
Mukhopadhyay SK; Duary B, 1995. Ethnobotany of some common crop field weeds in a sub-humid agricultural tract of West Bengal. In: Das Gupta MK, Ghosh DC, Gupta DD, Majumdar DK, Chattopadhyay GN, Ganguli PK, Munsi PS, Bhattacharya DJ, eds. Proceedings of the National Symposium on Sustainable Agriculture in Sub-humid Zone. Birbhum, India: Visva-Bharati Institute of Agriculture, 272-277.
Nahata K; Kusaba T, 1979. The multiplication of causal virus of tulip necrotic disease in the roots of some crops and weeds. Proceedings of the Association for Plant Protection of Hokuriku, 72:40-45.
Neal MC, 1965. In: Gardens of Hawaii. Bernice Pauahi Bishop Museum Special Publication No. 50. Honolulu, Hawaii, USA: Bishop Museum.
Noda K; Teerawatsakul M; Praknogvongs C; Chaiwirtnukul L, 1984. Major Weeds in Thailand. Project Manual No. 1. Bangkok, Thailand: National Weed Science Research Institute.
Ohwi J, 1965. Flora of Japan. Washington, DC., USA: Smithsonian Institution.
Pancho JV; Kim JS, 1985. Reproductive biology of weeds in vegetables in the highlands of Benguet, Luzon, Philippines. Philippine Journal of Weed Science, 12:75-98.
Parker C, 1992. Weeds of Bhutan. Weeds of Bhutan., vi + 236 pp.
Quisumbing E, 1923. General characters of some Philippine weed seeds. Philippine Agricultural Review, 16:298-351.
Radford AE, 1986. Fundamentals of Plant Systems. New York, USA: Harper and Row.
Ramakrishnan PS, 1960. Ecology of Eclipta alba Hassk. Proceedings of the Indian National Science Academy, 26B:191-204.
Rao MS; Joshi JK; Mukhiya YK; Singh VP, 1983. The effect of heavy oil effluent on morphological characters and pigment concentration of Eclipta alba Linn. Indian Journal of Botany, 6:162-165.
Satyanarayana Prasad J; Seshagiri Rao Y; Zaherudden SM; Mohan Das C, 1980. Weeds as hosts to parasitic nematodes of rice. Current Science, 49:755-756.
Sauerborn E; Sauerborn J, 1984. Plants of Cropland in Western Samoa with Special Reference to Taro. PLITS 2(4). Universitat Hohenheim, Stuttgart, Germany: Institut fur Pflanzenproduktion in den Tropen und Subtropen.
Smith Jr RJ, 1988a. Weed control in water- and dry-seeded rice, Oryza sativa. Weed Technology, 2:242-250.
Torrey J; Gray A, 1969. A Flora of North America. Volume II. New York, USA: Hafner.
Umemoto S; Kobayashi H; Ueki K, 1987a. Genecological studies on Eclipta prostrata. III. Ecological distribution of two types in northeastern Kyoto. Weed Research Japan, 32:91-92.
Vongsaroj P, 1991. Research and development for weed control in rice. In: Technical Bulletin 1991, Bangkok, Thailand: Department of Agriculture, Ministry of Agriculture and Cooperatives, 193-210.
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Parker C, 1992. Weeds of Bhutan. Thimphu, Bhutan: National Plant Protection Centre. vi + 236 pp.
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Global register of Introduced and Invasive species (GRIIS) | http://griis.org/ | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/