福岡県におけるオオツノクヌストモドキの分布再確認

木村悟朗*1,2,3, 武井秀平1,2, 宮下明大1,3, 谷川力1

1) イカリ消毒株式会社技術研究所（〒260-0844 千葉県千葉市中央区千葉寺町579）
2) イカリ消毒株式会社福岡営業所（〒812-0897 福岡県福岡市博多区平和橋1-18-19）
3) 農研機構食品総合研究所（〒305-8642 茨城県つくば市観音台2-1-12）

(受領: 2016年1月25日; 登載決定: 2016年5月26日)

Rediscovery of broad-horned flour beetle Gnatocerus (Gnatocerus) cornutus (Coleoptera: Tenebrionidae) from Fukuoka Prefecture, Japan

Goro Kimura*1,2, Shuhei Takei2, Akihiro Miyanoshi3, and Tsutomu Tanikawa1

*Corresponding author: g-kimura@iikari.co.jp
1) Technical Research Laboratory, IKARI Corporation, 579 Chibadera, Chio-ku, Chiba 260-0844, Japan
2) Fukuoka Office, IKARI Corporation, 1-18-19 Hamanichibashi, Hakata-ku, Fukuoka 812-0897, Japan
3) National Food Research Institute, NARO, 2-1-12 Kamondai, Tsukuba, Ibaraki 305-8642, Japan

(Received: 25 January 2016; Accepted: 26 May 2016)

Abstract: We collected adults and larvae of Gnatocerus (Gnatocerus) cornutus from spooled flour using gloved hands from the pipe of an exhaust duct system under the roof of the second floor of a food factory in Fukuoka Prefecture, Japan, on June 25, 2015. There were no other stored-product insect pests in the spooled flour sample. The presence of developing larvae and adults of G. cornutus suggested that the beetle had reproduced successfully at the food factory. This species is an introduced insect pest of stored products and has been reported sporadically in the Kyushu district in the 1950s, in Kinki district from 1957 to 1960, on Okinawa, Miyako and Yaeyama islands in 1973, in Kagoshima Prefecture (date unknown), and in Kanagawa Prefecture in 1993. In conjunction with these collection records, the discovery of G. cornutus described here suggests that this beetle could potentially colonize new localities in the future. The progeny of G. cornutus collected in this study were designated as the Fukuoka strain and maintained at the Technical Research Laboratory of IKARI Corporation in Chiba Prefecture.

Key words: Gnatocerus (Gnatocerus) cornutus, Fukuoka strain, stored-product pests, invasive species, benzoquinone

総　言

貯蔵害虫は環境汚染する食物を損失し、繁殖し繁殖ができない昆虫種である (中本, 1995)。かつては貯蔵中の穀類を食害して量的なロスをもたらす経済的損失がその主要な被害であった (松崎・武雄, 1993)。近年、穀物の衛生の管理に対する要求は厳しくなっており、食品原料の増加混入ムレムが発生すると、商品のイメージが低下し、それが引き起こす経済的な損失は非常に大きい (松崎・武雄, 1993)。乾燥穀物には穀物類のものではなく、ダニ類も発生することがある (三宅, 1990)。ダニ類、特にヒオウヒダニ類も大量発生した小麦粉を損失すると、アレルギーを発症することがある (ハンケツ症候群) (Eberle et al., 1993)。


オオツノクヌストモドキを含むゴミミシモン科の貯蔵食品害虫はペンゾキノールを産生する (三宅, 1990)。ペンゾキノール類は哺乳類に対して急性、慢性毒性を示し、飼料品を有する (三宅, 1990; Liu et al., 2011)。オオツノクヌストモドキはわが国において稀少種であるが、重要な貯蔵害虫であり、衛生害虫としての意義も高い。我々は福岡県で62年ぶりとなる本種を食品工場から採集したので報告する。

材料と方法

オオツノクヌストモドキの採集は2015年6月25日に福岡県の食品工場の2階天井裏で行った。本工場はゴキブリ類の捕獲があり、当日はその発生状況を確認するために臨時の目視調査を行っていた。ダクト内を確認したところ、一見するとクヌストモドキだが若千頭部の大きく見える甲虫類
を発見した。そこで、その甲虫類が5個体の虫体をその周辺の堆積物をゴム手袋着用した手で採取し、それぞれビニール袋に入れて実験室へ持ち帰った。採集した甲虫類は、吉田ら（1989）の検索表の通り同定。堆積物は実体顕微鏡下で観察後、プラスチックカップに移し、全粒小麦粉を100g程度加えて、30℃70%RHの恒温槽にて静置した。

ダクト内の清掃は、工場従業員によって直ちに実施され、2015年7月2日に発生状況を再び確認した。

結果と考察

我々がダクト内で発見した甲虫類5個体はすべてオツノコクヌストモドキであった（Fig. 1）。本種は宮崎県から記録された当時、和名はオツノコクヌストモドキとされた（吉田、1958年）、現在はオツノコクヌストモドキとされている。本種の属はGnatocerusと表記されることがあるが（Agassiz, 1846年）、不適当な修正名である（Watt, 1992年、Bouchard et al., 2005年）。

標本の個体は、食品工場の天井裏の排気ダクト内の粉溜まりから採取した。通常のモニタリングにおいて、本工場の製造エリアに堆積した粉溜まりには、コクヌストモドキTriobium castaneum（Herbst, 1797年）の生息は認められないが（武井秀平, 私信）、オツノコクヌストモドキが採集されることがある。なお、ダクト内に侵入した経路は不明である。なお、清掃された後のダクト内に、本種の生息は確認できなかった。

持ち帰った堆積物の中には10個体以上の幼虫も確認され、この個体群は、イカリの番虫株式会社技術研究所で飼育を試みたところ、7月18日にオツノコクヌストモドキ成虫の発生を確認した。その後も、本種以外の発生は確認されなかった。これらの結果は、オツノコクヌストモドキが本工場に定着していた可能性を示している。

現在、国内で飼育されているオツノコクヌストモドキは、吉田（1958年）が採集した宮崎県の産地であり、この個体群はおそらく国内で2例目（福岡県）となる。1957年に採集された宮崎県産の個体は、宮崎大学で維持され、それらによって生活史に関するいくつかの重要な情報が報告された（Tsuda and Yoshida, 1984, 1985年）。この個体群は福岡県産研究所で繁殖され、50年以上前の維持されている（宮本明, 私信）。Kageyama et al. (2010年) は岡山県産と記しているが、これは岡山県産で維持されたことに由来しており、宮崎県産と同じ個体群である。宮崎県産は岡山大学で再度分譲され（Okada et al., 2006年）、いくつかの研究が報告されている。本種は15℃~35℃の範囲で発育でき、30℃では42~45日で卵から成虫になる（井村, 2003年）。しかし、オツノコクヌストモドキの幼虫は密閉に関わらず成熟するが、密閉化しない（Tsuda and Yoshida, 1985年）。同様の現象はカシミリコクヌストモドキTriobium freemani Hinton, 1948年でも確認されている（Nakakita, 1982年、中北, 2009年）。我々はオツノコクヌストモドキの飼育法（鈴木・中北, 1991年）に準じて、福岡県産を維持している。防除のための基礎的な情報の提供、維持個体の飼育法の観察は今後検討したい。なお、Fig. 1の雛成虫と幼虫の写真は、この飼育個体を使用した。

今回の報告によって、オツノコクヌストモドキが福岡県から正式に記録された。本種が混在する地域であるにもかかわらず、国内の分布が限定的である理由は不明である。貯蔵害虫は健全生育を阻害する巣害害虫と破砕穀物や茶を含む二次性害虫に大別され（吉田, 1989年）。オツノコクヌストモドキは前者である（Savvidou and Bell, 1994年）。本種はコクヌストモドキやヒラタコクヌストモドキTriobium confusumJaquinon Du Val, 1868年と比べて幼虫の発育期間が短く、自然増殖率も小さい（Tsuda and Yoshida, 1984年）。コクヌストモドキやヒラタコクヌストモドキはわが国において普通種であること、これらの特徴がわが国におけるオツノコクヌストモドキの定着や分布拡大を制限している可能性がある。一方、本
種は侵入生物データベースにも登録されている移入種（外来種）である（国立環境研究所，2015）。材料等に付着して屋内に持ち込まれた場合、本実験のようにクボムシをモドキなどとの競争（餌や生息場所、特に訪問性）がなければ定着する可能性がある。本種の分布状況には今後も注目する必要がある。

文 証

本論文をまとめにあたり、相模原市立博物館の守屋博文氏と元神奈川県環境科学センターの野崎隆博士には文献収集にご協力いただいた。この場を借りて深謝する。


松崎和子，武庫和雄，1993. 都市害虫百科. 236 pp., 朝倉書店，東京.

益本仁雄，斎藤秀生，1989. ゴミムシダマシ科，日本産昆虫総目録（平舎健宏監修），pp. 419–431. 九州大学農学部昆虫学教室，福岡.

三井英三，1990. 食品工業と害虫－混入異物としての虫－. 240 pp., 光琳，東京.


佐々木健志，木村正明，河村 太，2002. COLEOPTERAコウチュウ目．増補改訂琉球列島産昆虫目録（東 清二監修），pp. 157–284. 沖縄生物学会，沖縄．

鈴木隆久，中北 宏，1991. コクヌストモドキ，ヒラタコクヌストモドキ，カシミールコクヌストモドキ，昆虫の育育法（満崎健，釜野静也，玉木佐命編），pp. 251–254. 日本植物防除協会，東京．


吉田敏治，渡辺 直，尊田望之，1989. 図説 貯蔵食品の害 虫，268 pp., 全国農村教育協会，東京．