SHORT COMMUNICATION

FIRST REPORT OF ‘CANDIDATUS PHYTOPLASMA PRUNORUM’ INFECTING APRICOTS IN TUNISIA

M. Ben Khalifa1, M. Aldaghi2, H. Hacheche1, J. Kummert2, M. Marrakchi1 and H. Fakhfakh1

1Laboratoire de Génétique Moléculaire Immunologie et Biotecnologie, Faculté des Sciences de Tunis, Campus Universitaire, Tunis El-Manar, 2092 Tunis, Tunisia
2Unité de Phytopathologie, Département de Biochimie et de Biologie Appliquées-FUSAGX Passage Des Déportés 2, 5030 Genbloux, Belgium

SUMMARY

‘Candidatus Phytoplasma prunorum’ was detected for the first time in Tunisia in apricot trees that showed early leaf reddening in autumn, off-season growth in winter followed by dieback, and bore small and tasteless fruits. Phytoplasma was detected by nested PCR using the universal phytoplasma primer pairs R16mF2/R1 and R16F2n/R2. An amplification product of the expected size (1.2 kbp) was obtained from samples collected from symptomatic but not from symptomless apricot trees. Amplicons subjected to RFLP analysis after digestion with endonucleases MseI and RsaI, gave patterns similar to those reported for the European stone fruit yellows phytoplasma (ESFY, 16SrX-B). Identification was further confirmed by PCR using ESFY-specific primer pairs (ECA1/ECA2).

Key words: apricot, ESFY, ‘Candidatus Phytoplasma prunorum’, PCR, RFLP, diagnosis.

Phytoplasmas cause a range of persistent diseases to many fruit trees in the world (Ogawa et al., 1995). In Europe, many economically important decline diseases of stone fruit species have been associated with the presence of European stone fruit yellows (ESFY) phytoplasma (Jarausch et al., 1998), a member of subgroup B of the apple proliferation group (16SrX-B) (Lee et al., 1998), denoted as ‘Candidatus Phytoplasma prunorum’ by Seemüller and Schneider (2004). The most common hosts of ESFY phytoplasma include apricot (Morvan, 1977), plum (Giunchedi et al., 1982), peach (Poggi Pollini et al., 2001), and almond (Seemüller et al., 1998).

Apricot (Prunus armeniaca L.) is one of the most common stone fruit trees grown in Tunisia, its production accounting for 18.5% of the global stone fruit yield. Most of the crop is destined for local consumption and only 1% is exported, mainly to neighboring countries (Anonymous, 2009).

Disease symptoms resembling those caused by ESFY phytoplasma were recently observed on apricots in northern Tunisia, where 17% of the apricot orchards are located (Anonymous, 2009). As reported in the present paper, the identification of the putative phytoplasma associated with the apricot syndrome was carried out by PCR using universal and ESFY-specific primer pairs followed and RFLP analysis.

Samples were collected during autumn and winter 2008 from apricot trees of the local cv. Arengi growing in the Ras Jebel area (northern Tunisia). Symptomatic plants showed early leaf reddening in autumn and off-season growth in winter in addition to sudden death of infected branches or of the entire canopy. These symptoms are similar to those previously reported by Morvan (1977). Infected trees bore small and tasteless fruits, which resulted in heavy yield losses.

A total of nine trees were sampled from the same apricot orchard, six of which showed ESFY-like symptoms whereas three were symptomless. Phytoplasma reference strains, i.e. apple proliferation (AP, 16SrX-A), European stone fruit yellows (ESFY, 16SrX-B) and pear decline (PD, 16SrX-C) phytoplasma (Lee et al., 1998) were maintained in the experimental host Catharanthus roseus (periwinkle) and used as positive controls.

Total DNA, used as template in PCR reactions, was extracted from ca. 1 g of freshly collected bark tissue. DNA from control strains was obtained from petioles and midribs of infected C. roseus plants. Nucleic acids were isolated according to the phytoplasma enrichment procedure described by Ahrens and Seemüller (1992).

PCR amplifications of phytoplasma 16S rDNA were carried out with universal primers R16mF2/R1 (Gundersen and Lee, 1996) and R16F2n/R2 (Lee et al., 1995). Non ribosomal primers ECA1/ECA2 (Jarausch et al., 1998) were also used for ESFY-specific detection. PCR was performed in 25 µl reaction volumes containing 20 ng DNA, 0.4 mM of each primer, 0.25 mM of each dNTP, 1.5 mM MgCl2 and 0.5 units of HotGoldStar DNA polymerase (Eurogentec, Belgium) with the manufacturer’s supplied buffer. Thermocycling was performed with a Peltier thermocycler (Hybaid, UK) for 35 cycles with 1 min each for denaturation, annealing and extension, followed by a 10 min final extension. For...
nested PCR, DNA amplified in the cycle primed by R16mF2/R1 was diluted 1:25 with sterile distilled water and used as template for an additional PCR run primed by R16F2n/R2. PCR products were separated on 1.5 % agarose gels containing 0.5 µg ml⁻¹ ethidium bromide and visualised using a UV transilluminator. Size of the PCR products was determined by comparison with 100 bp ladder (Fermentas, Lithuania).

For RFLP analysis, nested PCR products (10-12 µl) were digested with MseI, and RsaI endonucleases (Fermentas, Lithuania) according to the manufacturer’s instructions. MseI restriction products were separated in 5% polyacrylamide gel electrophoresis and stained by ethidium bromide. RsaI-digested fragments were separated in 2% agarose gel containing 0.5 µg ml⁻¹ ethidium bromide. DNA bands were visualised under UV light. Size of the PCR products was determined by comparison with 100 bp ladder (Fermentas, Lithuania). RFLP patterns were compared with those obtained from the phytoplasma reference strains and the RFLP patterns previously published (Lee et al., 1998).

Whereas nested PCR assays using the primer pairs R16mF2/R1 and R16F2n/R2 yielded a characteristic band of approximately 1.2 kb from all symptomatic apricot samples tested and from reference phytoplasma strains (AP, ESFY and PD) used as positive controls, no amplification was obtained from any of the symptomless trees.

As shown in Fig. 1 and 2, RFLP patterns obtained from diseased apricot trees were indistinguishable from each other and were similar to those previously reported for the ESFY phytoplasma (Lee et al., 1998).

PCR analysis using ESFY-specific primer pair ECA1/ECA2 yielded an amplification product of 273 bp from all apricot samples tested and from ESFY phytoplasma used as positive control, whereas no amplification was obtained from AP and PD controls (Fig. 3).

These results were taken as evidence that all symptomatic apricot trees of cv. Arengi tested were infected by ‘Ca. Phytoplasma prunorum’, a new record for Tunisia.

Notwithstanding the uprooting of infected apricot

Fig. 1. MseI restriction profiles of phytoplasma ribosomal DNA amplified using the universal primer pairs R16mF2/R1 and R16F2n/R2. Template DNA was from symptomatic apricots cv. Arengi (1-6) or from periwinkle plants infected with the following phytoplasma reference strains: AP, apple proliferation; ESFY, European stone fruit yellows; PD, Pear decline. M, marker.

Fig. 2. RsaI restriction profiles of phytoplasma ribosomal DNA amplified using the universal primer pairs R16mF2/R1 and R16F2n/R2. Template DNA was from symptomatic apricots cv. Arengi (1-6) or from periwinkle plants infected with the following phytoplasma reference strains: AP, apple proliferation; ESFY, European stone fruit yellows; PD, Pear decline. M, marker.

Fig. 3. Detection of ESFY phytoplasma using ESFY specific primer pair ECA1/ECA2. Template DNA was obtained from asymptomatic apricots (H), symptomatic apricots (1-6) or from periwinkle plants infected with the following phytoplasma reference strains: AP, apple proliferation; ESFY, European stone fruit yellows; PD, Pear decline. W, water control; M, marker.
trees, there was no apparent effect on disease spreading. Since this is the first report on the occurrence of ‘Ca.
Phytoplasma prunorum’ in apricot in Tunisia, investigations on its epidemiology must be undertaken. More-
over, the alleged pathogenicity of this phytoplasma to
different stone fruit species (Giunchedi et al., 1982;
Morvan, 1977; Poggi Pollini et al., 2001; Seemüller et
al., 1998), calls for investigations for assessing its possi-
bile presence and distribution in peach and almond
which, along with apricot, represent the most common
stone fruit trees grown in the country.

REFERENCES

pathogenic mycoplasma-like organisms by a polymerase
chain reaction that amplifies the sequence of the 16S
de l’Agriculture, Tunis, Tunisia.
Giunchedi L., Poggi-Pollini C., Credi R., 1982. Susceptibility
of stone fruit trees to the Japanese plum tree decline causal
Gundersen D.E., Lee I.M., 1996. Ultrasensitive detection of
phytoplasmas by nested PCR using two universal primers.
Phytopathologia Mediterranea 35: 144-151.
Jarausch W., Lansac M., Saillard C., Broquaire J.M., Dosba F.,
1998. PCR assay for specific detection of European stone
fruit yellows phytoplasmas and its use for epidemiological
studies in France. European Journal of Plant Pathology 104:
17-27.
Lee I.M., Bertaccini A., Vibio M., Gundersen D.E., 1995. De-
tection of multiple phytoplasmas in perennial fruit trees
with decline symptoms in Italy. Phytopathology 85: 728-735.
Revised classification scheme of phytoplasma based on
RFLP analyses of 16S rRNA and ribosomal protein gene
sequences. International Journal of Systematic Bacteriology
48: 1153-1169.
Ogawa J.M., Zehr E.I., Bird G.W., Ritchie D.F., Uriu K., Uyemoto
APS Press, St. Paul, MN, USA.
of European stone fruit yellows phytoplasma (ESFYP) in-
fecion in peach orchards in Northern-Central Italy. Jour-
nal of Phytopathology 149: 725-730.
Seemüller E., Marcone C., Lauer U., Ragozzino A., Göschl
Seemüller E., Schneider B., 2004. ‘Candidatus Phytoplasma
mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phy-
toplasma prunorum’, the causal agents of apple prolifer-
ation, pear decline and European stone fruit yellows,
respectively. International Journal of Systematic and Evolu-
tionary Microbiology 54: 1217-1226.