Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

Continuing to use www.cabi.org means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Datasheet

Rhynchophorus ferrugineus (red palm weevil)

Summary

  • Last modified
  • 20 March 2017
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Rhynchophorus ferrugineus
  • Preferred Common Name
  • red palm weevil
  • Taxonomic Tree
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Rhynchophorus ferrugineus (red palm weevil); adult female (dead specimen). Jordan Valley, Jericho.
TitleAdult female
CaptionRhynchophorus ferrugineus (red palm weevil); adult female (dead specimen). Jordan Valley, Jericho.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); adult female (dead specimen). Jordan Valley, Jericho.
Adult femaleRhynchophorus ferrugineus (red palm weevil); adult female (dead specimen). Jordan Valley, Jericho.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); adult male (dead specimen). Jordan Valley, Jericho.
TitleAdult male
CaptionRhynchophorus ferrugineus (red palm weevil); adult male (dead specimen). Jordan Valley, Jericho.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); adult male (dead specimen). Jordan Valley, Jericho.
Adult maleRhynchophorus ferrugineus (red palm weevil); adult male (dead specimen). Jordan Valley, Jericho.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); infested date palm tree. Moshaf Plantation, Jordan Valley, Israel.
TitleSymptoms
CaptionRhynchophorus ferrugineus (red palm weevil); infested date palm tree. Moshaf Plantation, Jordan Valley, Israel.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); infested date palm tree. Moshaf Plantation, Jordan Valley, Israel.
SymptomsRhynchophorus ferrugineus (red palm weevil); infested date palm tree. Moshaf Plantation, Jordan Valley, Israel.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); date palm tree infested by R. ferrugineus. Moshaf plantation, Jordan Valley (Israel).
TitleDamage symptoms on date palm
CaptionRhynchophorus ferrugineus (red palm weevil); date palm tree infested by R. ferrugineus. Moshaf plantation, Jordan Valley (Israel).
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); date palm tree infested by R. ferrugineus. Moshaf plantation, Jordan Valley (Israel).
Damage symptoms on date palmRhynchophorus ferrugineus (red palm weevil); date palm tree infested by R. ferrugineus. Moshaf plantation, Jordan Valley (Israel).©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); pheromone traps being installed to control R. ferrugineus in Jericho.
TitleControl measures
CaptionRhynchophorus ferrugineus (red palm weevil); pheromone traps being installed to control R. ferrugineus in Jericho.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); pheromone traps being installed to control R. ferrugineus in Jericho.
Control measuresRhynchophorus ferrugineus (red palm weevil); pheromone traps being installed to control R. ferrugineus in Jericho.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); trunk injection being used to control R. ferrugineus.
TitleControl measures
CaptionRhynchophorus ferrugineus (red palm weevil); trunk injection being used to control R. ferrugineus.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); trunk injection being used to control R. ferrugineus.
Control measuresRhynchophorus ferrugineus (red palm weevil); trunk injection being used to control R. ferrugineus.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); cutting and burying of heavily infested date palm to control R. ferrugineus.
TitleControl measures
CaptionRhynchophorus ferrugineus (red palm weevil); cutting and burying of heavily infested date palm to control R. ferrugineus.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); cutting and burying of heavily infested date palm to control R. ferrugineus.
Control measuresRhynchophorus ferrugineus (red palm weevil); cutting and burying of heavily infested date palm to control R. ferrugineus.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); monthly spraying of date palms to prevent infestation by R. ferrugineus.
TitleControl measures
CaptionRhynchophorus ferrugineus (red palm weevil); monthly spraying of date palms to prevent infestation by R. ferrugineus.
Copyright©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); monthly spraying of date palms to prevent infestation by R. ferrugineus.
Control measuresRhynchophorus ferrugineus (red palm weevil); monthly spraying of date palms to prevent infestation by R. ferrugineus.©Nasser Al-Jachoub
Rhynchophorus ferrugineus (red palm weevil); natural enemy. Dorsal and ventral views of Beauveria bassiana, sporulating on the cadaver of a red palm weevil.
TitleNatural enemy
CaptionRhynchophorus ferrugineus (red palm weevil); natural enemy. Dorsal and ventral views of Beauveria bassiana, sporulating on the cadaver of a red palm weevil.
Copyright©Abid Hussein
Rhynchophorus ferrugineus (red palm weevil); natural enemy. Dorsal and ventral views of Beauveria bassiana, sporulating on the cadaver of a red palm weevil.
Natural enemyRhynchophorus ferrugineus (red palm weevil); natural enemy. Dorsal and ventral views of Beauveria bassiana, sporulating on the cadaver of a red palm weevil.©Abid Hussein

Identity

Top of page

Preferred Scientific Name

  • Rhynchophorus ferrugineus (Olivier, 1790)

Preferred Common Name

  • red palm weevil

Other Scientific Names

  • Calandra ferruginea Fabricius, 1801
  • Curculio ferrugineus Olivier, 1790
  • Rhynchophorus signaticollis Chevrolat, 1882

International Common Names

  • English: Asiatic palm weevil; coconut weevil; red stripe weevil
  • Spanish: picudo asiático de la palma
  • French: charançon asiatique du palmier

Local Common Names

  • Germany: Indomalaiischer Palmen-Ruessler

EPPO code

  • RHYCFE (Rhynchophorus ferrugineus)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Coleoptera
  •                         Family: Curculionidae
  •                             Genus: Rhynchophorus
  •                                 Species: Rhynchophorus ferrugineus

Notes on Taxonomy and Nomenclature

Top of pageThe genus Rhynchophorus contains ten species, of which seven, including R. ferrugineus and R. vulneratus, are known to attack palms (Booth et al., 1990). A key to related genera and the revision of this species was provided by Wattanapongsiri (1966). Reginald (1973) suggested that R. ferrugineus is the typical Rhynchophorus species occurring worldwide. In Papua New Guinea, R. ferrugineus has been described as subspecies papuanus (Mercer, 1994). It is interesting to note that although the species has been continuously described under the author's name Olivier, some papers, especially those from the subcontinent, also indicate the author as Fabricius (Abraham et al., 1989; Ramachandran, 1991).

Description

Top of page

The following taxonomic description of R. ferrugineus was provided by Booth et al. (1990).

"Ferrugineous to black, legs paler, elytra shining or dull, slightly pubescent, black spots on pronotum extremely variable. Antennal insertions subbasal, scrobes deep, broad and widely opened ventrally, scape longer than funicle and club combined, equal to half length of rostrum, with funicular segments thick, conical, club large, broadly triangular, usually ferrugineous with 8 to 15 setae on inner side of spongy area. Rostrum in males almost four fifths length of pronotum. In females longer, slender, more cyclindrical; straight in profile, broad at base, apex not grooved, with dense, erect setae, at least subapically in males only, but not reaching scrobes, dorsal surface variously sculptured, ventrally very finely punctured, ventral space between antennal scrobes strongly narrowing posteriorly, gular suture with elongate-oval shape before narrowing to base. Submentum truncately concave with narrowly elongate, median depression, extending throughout its length. Mandibles tridentate distally, all teeth sharply pointed, apical and subapical teeth widely separated. Frons narrower than rostrum at base. Pronotum abruptly constricted anterolateraly, posterior margin broadly rounded. Scutellum one-quarter to one fifth elytral length, somewhat pointed posteriorly. Elytra smooth or with slight velvety pubescence, punctures along outer edges, with five deep striae and traces of four laterally. Procoxae strongly globose, widely separated, mesocoxae covered with soft, reddish-brown setae, pro- and mesofemora not strongly curved ventrally, with setae on ventral side of profemora in males only, tarsi pseudotetramerous, first segment twice as long as second, third with broad, median patch and lateral row of reddish-brown setae, fifth segment as long as first four combined, with nine to twelve setae ventrally. First abdominal sternite as long as third and fourth combined, but much shorter than second, sparsely punctures medially, strongly punctures laterally, fifth segment strongly punctured dorsolaterally, pygidium sparsely and minutely punctured posteriorly and dorsolaterally."

Eggs are creamy white, oblong and shiny. The average size of an egg is 2.62 mm long and 1.12 mm wide (Menon and Pandalai, 1960). Eggs hatch in 3 days and increase in size before hatching (Reginald, 1973). The brown mouth parts of the larvae can be seen through the shell before eclosion.

The larvae can grow up to 35 mm long and can be recognised by the brown head and white body. The body is composed of 13 segments. Mouthparts are well developed and strongly chitinized. The average length of fully grown larvae is 50 mm and the mean width is 20 mm in the middle.

When about to pupate, larvae construct an oval-shaped cocoon of fibre (Menon and Pandalai, 1960). The pupal case can range in length from 50-95 mm and in width from 25-40 mm. The prepupal stage lasts for about 3 days and the pupal period varies from 12-20 days. Pupae are first cream coloured but later turn brown. The surface is shiny, but greatly furrowed and reticulated. The average length of pupae is 35 mm and the average width is 15 mm.

Adult weevils are reddish brown, about 35 mm long and 10 mm wide and are characterized by a long curved rostrum (snout). Dark spots are visible on the upper side of the middle part of the body. The head and rostrum comprise about one-third of the total length. In the male, the dorsal apical half of the snout is covered by a patch of short brownish hairs, the snout is bare in the female, more slender, curved and a little longer than the male (Menon and Pandalai, 1960).

Sacchetti et al. (2006) provides a description of the different stages of development of the weevil and a simplified key for the identification of R. ferrugineus and R. palmarum.

Distribution

Top of pageAccording to Booth et al. (1990) R. ferrugineus occurs from Pakistan eastwards to Taiwan and the Philippines. It is also found in Saudi Arabia and the United Arab Emirates. A specimen of R. ferrugineus was captured in a trap in Palestine (Nasser Al-Jachoub, Palestinian National Agricultural Research Center, Jericho, Palestine, personal communication, 1999).

Flach (1983) reported that R. ferrugineus occurs together with R. vulneratus in Sarawak (Malaysia), Indonesia and the Philippines, but it is the exclusive species in India and Sri Lanka. Hartley (1977) reported the occurrence of Rhynchophorus in African oil palms but did not indicate the species.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

CountryDistributionLast ReportedOriginFirst ReportedInvasiveReferencesNotes

ASIA

BahrainPresentCABI/EPPO, 2010; EPPO, 2014
BangladeshWidespreadTabibullah & Ahmad, 1976; APPPC, 1987; CABI/EPPO, 2010; EPPO, 2014
CambodiaPresentWaterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014
ChinaRestricted distributionCABI/EPPO, 2010; EPPO, 2014
-FujianPresentCABI/EPPO, 2010; EPPO, 2014
-GuangdongPresentCABI/EPPO, 2010; EPPO, 2014
-GuangxiPresentCABI/EPPO, 2010; EPPO, 2014
-HainanPresentCABI/EPPO, 2010; EPPO, 2014
-Hong KongPresentEPPO, 2014
-JiangsuPresentCABI/EPPO, 2010; EPPO, 2014
-TibetPresentCABI/EPPO, 2010; EPPO, 2014
-YunnanPresentCABI/EPPO, 2010; EPPO, 2014
-ZhejiangPresentWang et al., 2008; CABI/EPPO, 2010; EPPO, 2014
Georgia (Republic of)PresentCABI/EPPO, 2010; EPPO, 2014
IndiaWidespreadCABI/EPPO, 2010; EPPO, 2014
-Andaman and Nicobar IslandsPresentCABI/EPPO, 2010; EPPO, 2014
-Andhra PradeshPresentDhileepan, 1992; CABI/EPPO, 2010; EPPO, 2014
-AssamPresentCABI/EPPO, 2010; EPPO, 2014
-BiharPresentCABI/EPPO, 2010; EPPO, 2014
-DamanPresentCABI/EPPO, 2010; EPPO, 2014
-DiuPresentCABI/EPPO, 2010; EPPO, 2014
-GoaPresentCABI/EPPO, 2010; EPPO, 2014
-GujaratPresentCABI/EPPO, 2010; EPPO, 2014
-KarnatakaPresentShantappa et al., 1979; CABI/EPPO, 2010; EPPO, 2014
-KeralaPresentGopinadhan et al., 1990; Dhileepan, 1991; CABI/EPPO, 2010; EPPO, 2014
-MaharashtraPresentCABI/EPPO, 2010; EPPO, 2014
-MeghalayaPresentRam et al., 2010; EPPO, 2014
-OdishaPresentCABI/EPPO, 2010; EPPO, 2014
-Tamil NaduPresentPeter, 1989; CABI/EPPO, 2010; EPPO, 2014; Sadakathullah & Ramachandran, 1992
-TripuraPresentCABI/EPPO, 2010; EPPO, 2014
-Uttar PradeshPresentCABI/EPPO, 2010; EPPO, 2014
-West BengalPresentCABI/EPPO, 2010; EPPO, 2014
IndonesiaWidespreadCABI/EPPO, 2010; EPPO, 2014
-Irian JayaPresentCABI/EPPO, 2010; EPPO, 2014
-JavaPresentLeefmans, 1920; CABI/EPPO, 2010; EPPO, 2014
-KalimantanPresentCABI/EPPO, 2010; EPPO, 2014
-MoluccasPresentCABI/EPPO, 2010; EPPO, 2014
-Nusa TenggaraPresentEPPO, 2014
-SulawesiPresentCABI/EPPO, 2010; EPPO, 2014
-SumatraPresentCABI/EPPO, 2010; EPPO, 2014
IranPresent1992Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014
IraqPresentCABI/EPPO, 2010; EPPO, 2014
IsraelPresent, few occurrencesKehat, 1999; CABI/EPPO, 2010; EPPO, 2014
JapanPresentCABI/EPPO, 2010; EPPO, 2014
-KyushuPresentAman et al., 2000; CABI/EPPO, 2010; EPPO, 2014
JordanPresent, few occurrencesKehat, 1999; CABI/EPPO, 2010; EPPO, 2014
KuwaitPresentCABI/EPPO, 2010; EPPO, 2014
LaosRestricted distributionCABI/EPPO, 2010; EPPO, 2014
LebanonPresentEPPO, 2014
MalaysiaRestricted distributionCABI/EPPO, 2010; EPPO, 2014
-SabahPresentCABI/EPPO, 2010; EPPO, 2014
-SarawakPresentFlach, 1983; CABI/EPPO, 2010; EPPO, 2014
MyanmarPresentWaterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014
OmanPresent1993CABI/EPPO, 2010; EPPO, 2014
PakistanPresentCABI/EPPO, 2010; EPPO, 2014
PhilippinesPresentCopeland, 1931; Braza, 1988; CABI/EPPO, 2010; EPPO, 2014
QatarPresent1996CABI/EPPO, 2010; EPPO, 2014
Saudi ArabiaWidespread1987Bokhari & Abuzuhira, 1992; CABI/EPPO, 2010; EPPO, 2014
SingaporePresentWaterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014
Sri LankaPresentCABI/EPPO, 2010; EPPO, 2014; Coconut Research Institute,1987
SyriaPresentEPPO, 2014; CABI/EPPO, 2010
TaiwanPresentLiao & Chen, 1997; CABI/EPPO, 2010; EPPO, 2014
ThailandPresentWaterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014
TurkeyRestricted distributionIPPC, 2007; CABI/EPPO, 2010; EPPO, 2014
United Arab EmiratesPresent1986CABI/EPPO, 2010; EPPO, 2014
VietnamPresentWaterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014
YemenPresent2013EPPO, 2014; EPPO, 2014

AFRICA

AlgeriaAbsent, confirmed by surveyEPPO, 2014
EgyptRestricted distribution1992CABI/EPPO, 2010; EPPO, 2014
LibyaPresentAl-Eryan et al., 2010; CABI/EPPO, 2010; EPPO, 2014
MoroccoRestricted distributionCABI/EPPO, 2010; EPPO, 2014
SpainCABI/EPPO, 2010; EPPO, 2014
-Canary IslandsRestricted distributionEPPO, 2014; CABI/EPPO, 2010
TunisiaPresentEPPO, 2011; EPPO, 2014EPPO Reporting Service No. 2011/235. Under eradication, containment.

NORTH AMERICA

USAEradicatedIPPC, 2015; EPPO, 2014
-CaliforniaEradicatedIPPC, 2015; NAPPO, 2010; EPPO, 2014

CENTRAL AMERICA AND CARIBBEAN

ArubaPresentRoda et al., 2011
CuraçaoPresentRoda et al., 2011
Netherlands AntillesPresent, few occurrencesEPPO, 2014; CABI/EPPO, 2010

EUROPE

AlbaniaPresentCABI/EPPO, 2010; EPPO, 2014
CroatiaPresentMilek & Simala, 2011; Milek & Simala, 2013
CyprusRestricted distributionEPPO, 2014; CABI/EPPO, 2010
DenmarkAbsent, confirmed by surveyEPPO, 2014
FinlandAbsent, no pest recordEPPO, 2014
FranceRestricted distributionEPPO, 2014; CABI/EPPO, 2010
-CorsicaTransient: actionable, under eradicationEPPO, 2014; CABI/EPPO, 2010
-France (mainland)Present, few occurrencesCABI/EPPO, 2010
GreeceRestricted distributionEPPO, 2014; CABI/EPPO, 2010
-CretePresentEPPO, 2014; CABI/EPPO, 2010
-Greece (mainland)Restricted distributionCABI/EPPO, 2010
ItalyRestricted distributionEPPO, 2014; CABI/EPPO, 2010
-Italy (mainland)Restricted distributionCABI/EPPO, 2010
-SardiniaPresentEPPO, 2014; CABI/EPPO, 2010
-SicilyPresentCABI/EPPO, 2010; EPPO, 2014
MaltaPresentIPPC, 2013; CABI/EPPO, 2010; EPPO, 2014Present: under eradication.
NetherlandsAbsent, confirmed by surveyEPPO, 2014; NPPO of the Netherlands, 2013Based on ongoing long-term monitoring of importing companies, 75 survey observations in 2012.
PolandAbsent, confirmed by surveyEPPO, 2014
PortugalRestricted distributionEPPO, 2014; CABI/EPPO, 2010
-Portugal (mainland)PresentCABI/EPPO, 2010
SloveniaPresent, few occurrencesEPPO, 2014; CABI/EPPO, 2010
SpainRestricted distribution1993CABI/EPPO, 2010; EPPO, 2014
-Balearic IslandsPresentEPPO, 2014; CABI/EPPO, 2010
-Spain (mainland)Restricted distributionCABI/EPPO, 2010
UKAbsent, confirmed by surveyEPPO, 2014
UkraineAbsent, confirmed by surveyEPPO, 2014

OCEANIA

AustraliaPresentEPPO, 2014; CABI/EPPO, 2010
-QueenslandPresentCABI/EPPO, 2010; EPPO, 2014
Papua New GuineaPresentMercer, 1994; CABI/EPPO, 2010; EPPO, 2014
SamoaPresentKalshoven & van der Laan, 1981; CABI/EPPO, 2010; EPPO, 2014
Solomon IslandsPresentCABI/EPPO, 2010; EPPO, 2014
VanuatuPresentCABI/EPPO, 2010; EPPO, 2014

Risk of Introduction

Top of pageIt could be suggested that since the weevil is present in almost all the major coconut-growing countries in the tropics, it does not pose any phytosanitary risk to these countries. However, information is not available on its quarantine status in the countries in which it is absent. Esteban Duran et al. (1998) suggested that R. ferrugineus is among the pests that could potentially be introduced to Spain and other countries of the European Union through imported vegetables. Fitzgibbon et al. (1999) identified the weevil as having potential for introduction and establishment in northern Australia.

Hosts/Species Affected

Top of pageWith the exception of rattan (Calamus merillii) reported in the Philippines (Braza, 1988), R. ferrugineus is essentially a pest of palms. Some ornamentals have also been reported to be attacked by the weevil (Menon and Pandalai, 1960).

Growth Stages

Top of pageFlowering stage, Fruiting stage, Vegetative growing stage

Symptoms

Top of pageIt is very difficult to detect R. ferrugineus in the early stages of infestation. Generally, it is detected only after the palm has been severely damaged. Careful observation may reveal the following signs which are indicative of the presence of the pest (Coconut Research Institute, 1987):

- some holes in the crown or trunk from which chewed-up fibres are ejected. This may be accompanied by the oozing of brown viscous liquid

- crunching noise produced by the feeding grubs can be heard when the ear is placed to the trunk of the palm

- a withered bud/crown.

Symptoms List

Top of page
SignLife StagesType

Growing point

dieback
internal feeding; boring
rot

Stems

gummosis or resinosis
internal feeding

Biology and Ecology

Top of pageEggs

The female weevil lays its eggs in wounds along the trunk or in petioles, and also in wounds caused by the rhinoceros beetle, Oryctes rhinoceros.

Larvae

On hatching, the apodal larvae begin feeding towards the interior of the palm. In palms up to 5 years old the larvae may be found in the bole, stem or crown. As palms advance in age, the grubs are generally confined to the portions of the stem close to the growing point. In palms more than 15 years old, the larvae are generally found in the stem about 2-3 feet below the crown, in the crown and bases of leaf petioles. The larval period ranges from 36-78 days (average 55 days) (Nirula et al., 1953). Jaya et al. (2000) recorded seven larval instars when R. ferrugineus was reared on sugarcane. However, larval growth did not conform to Dyar's rule.

Prepupae and Pupae

When about to pupate, larvae construct an oval-shaped cocoon of fibre (Menon and Pandalai, 1960). The complete life cycle of the weevil, from egg to adult emergence, takes an average 82 days in India (Menon and Pandalai, 1960).

Adults

After emergence from the pupal case the adult weevil remains inside the cocoon for 4-17 days (average 8 days) (Menon and Pandalai, 1960). According to Hutson (1933), the weevil becomes sexually mature during this period of inactivity.

Weevils are active during day and night, although flight and crawling of weevils are generally restricted to the day time. Leefmans (1920) reported that weevils are capable of long flights and can find their host plants in widely separated areas; his studies suggested that weevils can detect breeding sites at distances of at least 900 m. Although Copeland (1931) suggested that the adult weevil does not feed on palms but visited them for oviposition only, it has been reported that the weevil definitely feeds and cannot live without food for more than 1 week. Mating takes place at any time of the day and males and females mate many times during their lifetime. The pre-oviposition period can range from 1-7 days. Oviposition is generally confined to the softer portions of the palm and continues for approximately 45 days. During this period, the weevil lays an average 204 eggs; the maximum number of eggs laid by a single female in captivity is 355 in 42 days and the minimum is 76 in 26 days (Menon and Pandalai, 1960). There is a short post-oviposition period of 10 days before the weevil dies. The longevity of the weevil ranges from 2-3 months, irrespective of the sex. In captivity, the maximum life span of the adult was 76 days for the female and 113 days for the male. It has been suggested that a single pair of weevils can theoretically give rise to more than 53 million progeny in four generations in the absence of controlling factors (Menon and Pandalai, 1960; Leefmans, 1920). In Egypt, El Ezaby (1997a) reported that the weevil has three generations per year, the shortest generation (first) of 100.5 days and the longest (third) of 127.8 days. The study also showed that the fatal (threshold) temperature of the egg was 40°C.

For laboratory rearing of adults, freshly shredded sugarcane tissue served both as food and oviposition medium (Rananavare et al., 1975). Rahalkar et al. (1978) reported that an artificial diet containing sugarcane bagasse, coconut cake, yeast, sucrose, essential minerals and vitamins, agar, water and food preservatives maintained 12 generations of the weevil.

The biological aspects of R. ferrugineus have recently been studied by Justin et al. (2008), Abe et al. (2009), Prabhu et al. (2009), Salama et al. (2009) and Wang et al. (2009).

Natural Enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Chelisoches morioPredatorEggs/Larvae
Cytoplasmic polyhedrosis virus (CPV)PathogenLarvae
Heterorhabditis indicusParasiteLarvae
HypoaspisParasiteAdults/Pupae
Metarhizium pingshaensePathogenCito et al., 2014
Praecocilenchus ferruginophorusParasiteAdults
Scolia erraticaParasiteLarvae
Steinernema carpocapsaeParasite
Steinernema riobravisParasite

Notes on Natural Enemies

Top of pageReginald (1973) suggested that natural enemies do not play an important part in controlling R. ferrugineus. There were some attempts in the laboratory and field using the predacious Chelisoches morio in India (Abraham and Kurian, 1973). However, it did not provide a measurable impact on the weevil. Using pathogens may be rewarding: Gopinadhan et al. (1990) reported that a cytoplasmic polyhedrosis virus infected all stages of the weevil in Kerala (India); infected late-larval stages resulted in malformed adults and drastic suppression of the host population. Although various species of mites have been reported in India as parasites of R. ferrugineus (Nirula et al., 1953; Peter, 1989), their impact on the population needs to be ascertained. There has only been one report of incidence of a parasite, Scolia erratica, on the larvae of the weevil. Anon (1976) reported that mites belonging to Macrocheles sp. and Fuscuropoda were found associated with the weevil in the field in Sri Lanka. However, their role in causing harmful effects to the weevil is not known.

Impact

Top of page

Infestations of red palm weevil have a tremendous impact, not only on the economic produce of the palm (dates) but also on society. In the Gulf region, date palm is closely associated with the culture, religion and the life of the people. Approximately 30% of the world’s date production comes from the Gulf region of the Middle-East. Recent statistics shows that red palm weevil infestation may cause severe economic losses ranging between 1 and 5%, accounting for 5.18 to 25.92 million USD, respectively, with indirect losses increasing this figure several fold. The estimated cost saving of the curative treatment of palms in the early stage of attack is US $20.73 to 103.66 million for 1 and 5% infestation levels, respectively (El-Sabea et al., 2009). Menon and Pandalai (1960) suggested that R. ferrugineus is a serious pest of coconut palms in India and Sri Lanka. Ganapathy et al. (1992) observed R. ferrugineus damage in 34% of coconut groves in Cochin, India. Dhileepan (1991) reported that the weevil is a major pest of oil palms in Kerala. Flach (1983) suggested that R. ferrugineus and R. vulneratus are major pests of the sago palm in Sarawak. A relatively recent record of R. ferrugineus in India as a pest on oil palm (Misra, 1998) poses serious implications to some countries in South-East Asia (e.g. Malaysia, Indonesia) where oil palm is a major economic crop. In most European countries, the target of red palm weevil infestation is mainly the ornamental palms ruining the aesthetic beauty of parks and roads. Overall, red palm weevil damage to any type of palm accounts for losses of millions of dollars because the pest feeds on the trunk.

Diagnosis

Top of page

Bokhari and Abuzuhira (1992) developed diagnostic tests for the weevil-infested date palm trees in Saudi Arabia. In such palms, the rate of transpiration increased and diffusive resistance and water potential were reduced. All three factors could be monitored to detect infestation by R. ferrugineus. A diagnostic protocol for R. ferrugineus is given in OEPP/EPPO (2007).

Detection and Inspection

Top of pageThe Davis Red Weevil Detector is an electronic instrument capable of amplifying the noise made by R. ferrugineus larvae (Coconut Research Institute, 1971). This detector is essentially a low frequency amplifier. Conventional light traps do not attract R. ferrugineus (Sadakathulla and Ramachandran, 1992). In Sri Lanka, Ekanayake (in Reginald, 1973) found traps baited with split fresh coconut petioles to be effective in reducing the number of palms attacked by weevils and consequently recommended it in estate practice. The Coconut Research Institute (1987) suggested regular surveys of all young palms up to 10-12 years of age as an inspection measure to detect weevil-infested palms.

Recently, aggregation pheromones have been used to mass-trap or detect adult weevils. Faleiro and Chellapan (1999) reported the use of ferrugineol-based pheromone lures for trapping R. ferrugineus. They also suggested that it was essential to use ferrugineol-based pheromone lures together with food bait (sugarcane) to obtain higher catches of the weevil. Abraham et al. (1999) also found that weevil trapping is only effective if the pheromone is used along with the food bait. A specially designed pheromone trap was described by Maheswari and Rao (2000). Rajapakse et al. (1998) found that the 5L open plastic bucket baited with ferrugineol (4-methyl-5- nonanol)-pentanol, hung on coconut palm stems at 1.5 m caught significantly more adult weevils than ferrugineol-pentanol baited funnel and metal traps. Ferrugineol remained effective as a bait for 12 weeks under field conditions. Hallett et al. (1999) found that trap catches were maximised by placing the traps at ground level or a height of 2 m and that vane traps were superior to bucket traps. Muralidharan et al. (1999) found a significant number of weevils were attracted to bucket traps baited with sugarcane, followed by traps baited with coconut exocarp; date fronds were the least preferred bait. Nakash et al. (2000) suggested the use of dogs for detecting weevils infesting date palms in Israel.

Similarities to Other Species/Conditions

Top of page

Sacchetti et al. (2006) provides a simplified key for the identification of the two palm weevils R. ferrugineus and R. palmarum.

Prevention and Control

Top of page

Integrated Pest Management Programmes

Integrated pest management for R. ferrugineus has been developed and tested in coconut palms in India (Kurian et al., 1976; Sathiamma et al., 1982, Abraham et al., 1989). Included in the IPM programme were cultural measures such as plant and field sanitation; physical methods by preventing entry of weevils through cut ends of petioles and wounds; and use of attractants and other chemicals (including filling of leaf axils with gamma BHC and sand as a preventive measure). Abraham et al. (1989) found the IPM approach very effective in reducing the number of infested palms in Kerala, India. Abraham et al. (1998) suggested that the major components of the IPM strategy for R. ferrugineus are surveillance, trapping the weevil using pheromones lures, detecting infestation by examination of palms, eliminating hidden breeding sites, clearing abandoned gardens, maintaining crop and field sanitation, using preventive chemical treatments, curative chemical control, implementing quarantine measures, training and education. In the Al Qatif region of Saudi Arabia, Vidyasagar et al. (2000a) successfully developed an IPM programme which, in addition to mass pheromone trapping, included a survey of all the cultivated gardens, systematic checking of all palms for infestation, periodic soaking of palms, and mass removal of neglected farms. A review of control strategies and IPM for the weevil were also presented by various other authors (Ramachandran, 1998; Nair et al., 1998; Murphy and Brisco, 1999). Faleiro (2006) has reviewed the issues and management of R. ferrugineus in coconut and date palm over the past 100 years.

Cultural and Sanitary Methods

These include prompt destruction of infested plant material (Kurian and Mathen, 1971) and prophylactic treatment of cut wounds (Pillai, 1987). Abraham (1971) suggested that leaves be cut at or beyond the region where leaflets emerge at the base to prevent entry by the weevil into the stem. Azam and Razvi (2001) found that deep cutting to completely remove the growing point of off-shoots (unwanted growths from the trunk), then treating the cut surface with an insecticide such as formothion or dimethoate and covering it with mud reduced the level of infestation to less than 4% compared to 20% for an untreated control (cut at the trunk surface).

Biological Control

Parasitoids and predators

There is not much information on the advocation of the classical approach for the use of biological control agents against R. ferrugineus. However, Reginald (1973) reported a fortuitous occurrence when Platymerus laevicollis was imported into Sri Lanka from Western Samoa as a possible predator on Oryctes rhinoceros and was found to prefer R. ferrugineus. There have also been studies to evaluate the potential of predators and parasites; Abraham and Kurian (1973) reported that Chelisoches morio nymphs consumed 5.3 weevil eggs and 4.2 weevil larvae per day whereas C. morio adults consumed 8.5 weevil eggs and 6.7 weevil larvae per day. In addition, they provided some information on the biology of this predator in the laboratory and field.

Entomopathogenic nematodes

Abbas and Hononik (1999) found that Steinernema riobrave, S. carpocapsae and Heterorhabditis sp. were pathogenic to both larval and adult stages of R. ferrugineus in the laboratory. They also reported that propagation of the nematodes was possible in the adult but rare in the larvae. Laboratory studies conducted by Banu et al. (1998) showed that the larva of R. ferrugineus was host to the naturally-occurring entomopathogenic nematode Heterorhabditis indicus in Kerala, India. Salama and Abd-Elgawad (2001) baited using the greater wax moth larvae and obtained five strains of heterorhabditid nematodes, which were more virulent on R. ferrugineus than the other entomophilic nematode species in culture. However, only two of the strains survived a 24-h exposure period in palm-infested tree tissue. Hanounik (1998) reported that the application of genetically enhanced strains of Steinernema and Heterorhabditis to the larvae of R. ferrugineus resulted in 95-100% mortality in the laboratory and 50% mortality in the field. El Bishry et al. (2000) studied the impact of date palm tissues infested with R. ferrugineus on five entomopathogenic nematode strains in the laboratory. Results showed that juveniles of all strains were killed within 24 h when placed on infested tissues. The washings of these tissues also had a detrimental effect on the nematodes. The dispersal and host finding ability of three of the strains was negatively affected in palm tissues after washing and sterilization. For further information on the use of entomopathogenic nematodes against R. ferrugineus, see Monzer and Al-Elimi (2002), Saleh and Alheji (2003), Saleh et al. (2004), Llácer et al. (2009), Dembilio et al. (2010, 2011), Jacas et al. (2011), Tapia et al. (2011) and Triggiani and Tarasco (2011).

Other entomopathogens

Dangar (1997) studied the potency of a free-living unidentified yeast isolated from the haemolymph of R. ferrugineus as a biocontrol agent. The LD50 and LT50 values for larvae were calculated to be 8,000,000 yeasts/insect and 4 days, respectively.

Other Control Measures

Botanical pesticides

Laboratory tests in India showed that the oil derivative from garlic and its synthetic form diallyl disulphide were toxic to the weevil (Murthy and Amonkar, 1974).

Pheromones and other behavioural chemicals

Pheromones are increasingly being used as a management tool against R. ferrugineus. Detailed protocols for pheromone-based mass trapping of the weevil are provided by Hallett et al. (1999). Faleiro et al. (1999) evaluated pheromone lures for the weevil in date plantations in Saudi Arabia and found that high release lures (Ferrolure and Ferrolure+) obtained from Chem Tica Natural, Costa Rica, attracted twice as many weevils as low release formulations. These pheromone lures were equally effective in attracting the pest and were on a par with Agrisense lures from the UK. Vidyasagar et al. (2000b) measured the impact of using a pheromone-based mass trapping system as a component of IPM of the weevil in Saudi Arabia using aggregation pheromone, ferrugineol, 4-methyl-5-nonanol (Ferrolure) and/or 4-methyl-5-nonanol + 4-methyl-5-nonanone (9:1) (Ferrolure+). Adult weevil populations were reduced from 4.12 weevils per trap per week in 1994 to 2.02 weevils per trap per week in 1997 when this system was used and there was a significant reduction in the level of infestation of date palms by the weevil during this period. In terms of population dynamics, peak adult populations were trapped immediately after the winter season during April and May and a smaller peak was observed during October and November just before the onset of winter. There was a drop in captures of weevils at the onset of winter. El Garhy (1996) reported thresholds temperatures for weevil activity in the range of 12-14°C, with more adults captured in summer than in winter and twice as many females captured as males, irrespective of season. Faleiro et al. (1999) compared Ferrolure and Ferrolure+ and reported that the longevity of the lures was lower in summer than in winter. The longevity of both was greater under shade and when traps were exposed to sunlight; Ferrolure+ lasted longer than Ferrolure. Gunawardena et al. (1998) identified host attractants for the weevil from freshly cut coconut bark and found that a 1:1 mixture of gamma nonanoic lactone 1 and 4-hydroxy-3- methoxystyrene 2 were responsible. Perez et al. (1996) reported that there were no apparent differences between the pheromones of R. ferrugineus and R. vulneratus.

Sterile Backcrosses /Sterile Insect Technique /Chemosterilization

Ramachandran (1991) reported the effects of gamma radiation on R. ferrugineus whereby production of viable eggs decreased with increasing radiation dose, although there was no apparent effect on the F2 generation. Rahalker et al. (1973) reported that treatment of 1-2-day-old males of the weevil at a dose of 1.5 krad (15 Gy) resulted in 90% sterility with no adverse effect on survival. Treatment of higher doses increased sterility but reduced survival. A ratio of ten treated males to one normal one was needed for appreciable suppression of progeny production. Using chemosterilants Rahalkar et al. (1975) reported that treatment of male weevils with metepa or hempa did not result in a satisfactory level of sterility without adversely affecting their survival. However, metepa was more toxic than hempa.

Chemical Control

As damage symptoms by R. ferrugineus are difficult to detect during the early stages of infestations, emphasis is placed generally on preventive aspects. However, this is not always possible. The common and practical curative measure is through the use of insecticides. The use of the latter tends to be the major mode of control advocated as seen from the survey of literature. Preventive and curative measures include: trunk injection with systemic insecticides carried out during the early stages of infestations (Rao et al., 1973; Anon., 1976), recently, trunk injection using pirimiphos ethyl also gave good control (El Ezaby, 1997); treatment of wounds with repellents and filling leaf axils with insecticide dusts such as BHC mixed with sand (Mathen and Kurian, 1966; Abraham, 1971); and drenching of the crown of infested trees with insecticides (Kurian and Mathen, 1971). Barranco et al. (1998) recorded the percentage mortality of R. ferrugineus larvae treated with different rates of fipronil and azadirachtin (neem). Hernandez-Marante et al. (2003) reported highest mortality of R. ferrugineus with a combination of trunk injections and sprays with the same insecticide, with carbaryl, fipronil and imidacloprid providing highest efficacy against the pest.

References

Top of page

Abbas MST, Hanonik SP, 1999. Pathogenicity of entomopathogenic nematodes to red palm weevil, Rhynchophorus ferrugineus. International Journal of Nematology, 9(1):84-86; 14 ref.

Abe F, Hata K, Sone K, 2009. Life history of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophtoridae), in southern Japan. Florida Entomologist, 92(3):421-425. http://www.fcla.edu/FlaEnt/

Abraham VA, 1971. Note on an effective method of preventing entry by red-weevil, Rhynchophorus ferrugineus Fabricius (Curculionidae: Coleoptera), into the stem of coconut palm through cut petioles. Indian Journal of Agricultural Sciences, 41(12):1130-1131

Abraham VA, Al-Shuaibi MA, Faleiro JR, Abozuhairah RA, Vidyasagar PSPV, 1998. An integrated management approach for red palm weevil Rhynchophorus ferrugineus Oliv., a key pest of date palm in the Middle East. Proceedings of the international conference on integrated pest management, Muscat, Sultanate of Oman, 23-25 February, 1998. Sultan Qaboos University Journal for Scientific Research Agricultural Sciences, 3:77-83.

Abraham VA, Koya KMA, Kurian C, 1989. Integrated management of red palm weevil (Rhynchophorus ferrugineus F.) in coconut gardens. Journal of Plantation Crops, 16(Supplement):159-162

Abraham VA, Kurian C, 1973. Chelisoches moris F. (Forficulidae: Dermaptera), a predator on eggs and early instar grubs of the red palm weevil Rhynchophorus ferrugineus F. (Curculionidae: Coleoptera). In: Nayar NM, ed. Journal of Plantation Crops, 1:147-152

Abraham VA, Nair SS, Nair CPR, 1999. A comparative study on the efficacy of pheromone lures in trapping red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera : Curculionidae) in coconut gardens. Indian Coconut Journal (Cochin), 30(7):1-2; 6 ref.

Al-Eryan MAS, El-Ghariani IM, Massry A, Agleyo HA, Mohamed SA, Ikraem AA, Ismail SS, 2010. First record of the red palm weevil [Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae)] in Libya. Acta Horticulturae [IV International Date Palm Conference, Abu Dhabi, United Arab Emirates.], No.882:413-418. http://www.actahort.org/books/882/882_46.htm

Aman N, Kurogi S, Nakamura M, Goto H, 2000. Occurrence of the red palm weevil, Rhynchophorus ferrugineus in Mayazaki Prefecture. Proceedings of the Association for Plant Protection of Kyushu, 46:127-131.

Anon, 1976. Report of the Crop Protection Division. Ceylon Cocon. Quart. No: 27.

Anon., 1971. The Chrysanthemum. Paris, Federation Nationale des Producteurs de l'Horticulture et des Pepinieres., No.8:123 pp.

Anon., 1987. Crop Protection. Annual Report 1986, Rubber Research Institute of Malaysia, 33.

APPPC, 1987. Insect pests of economic significance affecting major crops of the countries in Asia and the Pacific region. Technical Document No. 135. Bangkok, Thailand: Regional Office for Asia and the Pacific region (RAPA).

Azam KM, Razvi SA, 2001. Infestation of red palm weevil, Rhynchophorus ferrugineus in relation to off-shoots on date palm trunk and its management. Paper presented in the meeting on the Red Palm Weevil, Rhynchophorus ferrugineus, Muscat, Oman, 19-20 February, 2000 (abstract).

Banu JG, Sosamma VK, Koshy PK, 1998. Natural occurrence of an entomopathogenic nematode, Heterorhabditis indicus (Poinar, Karunakar and David) from Kerala, India. Nematology: challenges and opportunities in 21st Century. Proceedings of the Third International Symposium of Afro-Asian Society of Nematologists (TISAASN), Sugarcane Breeding Institute (ICAR), Coimbatore, India, April 16-19, 1998., 274-280; 16 ref.

Barranco P, Pena Jde la, Martfn MM, Cabello T, 1998. Efficiency of chemical control of the new palm pest Rhynchophorus ferrugineus (Olivier, 1790) (Col.: Curculionidae). Boleti^acute~n de Sanidad Vegetal, Plagas, 24(2):301-306; 9 ref.

Bokhari UG, Abuzuhira R, 1992. Diagnostic tests for redpalm weevil, Rhynchophorus ferrugineus infested datepalm trees. Arab Journal of Scientific Research, 10(3):93-104

Booth RG, Cox ML, Madge RB, 1990. IIE guides to insects of importance to man. 3. Coleoptera. Wallingford, UK: CAB International.

Braza RD, 1988. Asiatic palm weevil destroys rattan too. Canopy International. 13(6):6.

Buxton PA, 1920. Insect pests of dates and the date palm in Mesopotamia and elsewhere. Bull. Ent. Res., 11:287-303.

CABI/EPPO, 2010. Rhynchophorus ferrugineus. [Distribution map]. Distribution Maps of Plant Pests, No.June. Wallingford, UK: CABI, Map 258 (3rd revision).

Cito A, Mazza G, Strangi A, Benvenuti C, Barzanti GP, Dreassi E, Turchetti T, Francardi V, Roversi PF, 2014. Characterization and comparison of Metarhizium strains isolated from Rhynchophorus ferrugineus. FEMS Microbiology Letters, 355(2):108-115. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1574-6968

Copeland EB, 1931. The coconut. London, UK: Macmillan and Co., Ltd.

Dangar TK, 1997. Infection of red palm weevil, Rhynchophorus ferrugineus, by a yeast. Journal of Plantation Crops, 25(2):193-196; 12 ref.

Dembilio O, Karamaouna F, Kontodimas DC, Nomikou M, Jacas JA, 2011. Susceptibility of Phoenix theophrasti (Palmae: Coryphoideae) to Rhynchophorus ferrugineus (Coleoptera: Curculionidae) and its control using Steinernema carpocapsae in a chitosan formulation. Spanish Journal of Agricultural Research, 9(2):623-626. http://revistas.inia.es/index.php/sjar/article/view/1778/1455

Dembilio Ó, Llácer E, Martínez de Altube Mdel M, Jacas JA, 2010. Field efficacy of imidacloprid and Steinernema carpocapsae in a chitosan formulation against the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Management Science, 66(4):365-370. http://www.interscience.wiley.com/pestmanagementscience

Dhileepan K, 1991. Insects associated with oil palm in India. FAO Plant Protection Bulletin, 39(2-3):94-99.

Dhileepan K, 1992. Insect pests of oil palm (Elaeis guineensis) in India. Planter, 68(793):183-191

El Ezaby F, 1997. A biological in vitro study on the red Indian date palm weevil. Arab Journal of Plant Protection, 15(2):84-87.

El-Bishry MH, El-Sebay Y, Al-Elimi MH, 2000. Impact of the environment in date palm infested with Rhynchophorus ferrugineus on five entomopathogenic nematodes (Rhabditida). International Journal of Nematology, 10(1):75-80; 22 ref.

El-Ezaby FA, 1997. Injection as a method to control the Red Indian date palm weevil Rhynchophorus ferrugineus. Arab Journal of Plant Protection, 15(1):31-38; 17 ref.

El-Garhy ME, 1996. Field evaluation of the aggregation pheromone of the red palm weevil, Rhynchophorus ferrugineus, in Egypt. Brighton Crop Protection Conference: Pests & Diseases - 1996: Volume 3: Proceedings of an International Conference, Brighton, UK, 18-21 November 1996., 1059-1064; 14 ref.

El-Sabea AMR, Faleiro JR, Abo-El-Saad MM, 2009. The threat of red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf region in the Middle-East: an economic perspective. Outlooks on Pest Management, 20(3):131-134. http://www.pestoutlook.com

EPPO, 2007. Rhynchophorus ferrugineus and Rhynchophorus palmarum. Bulletin OEPP/EPPO Bulletin, 37(3):571-579. http://www.blackwell-synergy.com/doi/full/10.1111/j.1365-2338.2007.01165.x

EPPO, 2011. EPPO Reporting Service. EPPO Reporting Service. Paris, France: EPPO. http://archives.eppo.org/EPPOReporting/Reporting_Archives.htm

EPPO, 2014. EPPO Reporting Service, No. 2014/013. Paris, France: European and Mediterranean Plant Protection Organization.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Esteban-Durßn J, Yela JL, Beitia-Crespo F, JimTnez-ßlvarez A, 1998. Exotic curculionids susceptible to being introduced into Spain and other countries of the European Union through imported vegetables (Coleoptera: Curculionidae: Rhynchophorinae). Boleti^acute~n de Sanidad Vegetal, Plagas, 24(1):23-40; 26 ref.

Faghih AA, 1996. The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera, Curculionidae) in Saravan region (Sistan & Balouchistan province, Iran). Applied Entomology and Phytopathology, 63(1/2):16-18; 17 ref.

Faleiro JR, 2006. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science, 26(3):135-154. http://journals.cambridge.org/download.php?file=%2FJTI%2FJTI26_03%2FS1742758407203340a.pdf&code=1deb83cc2eaac3c89ea5704c1f57a0b3

Faleiro JR, Abraham VA, Nabil Noudi, Al Shuaibi MA, Kumar TP, 2000. Field evaluation of red palm weevil, Rhynchophorus ferruginous Oliv. pheromone (Ferrugineol) lures. Indian Journal of Entomology, 62(4):427-433; 11 ref.

Faleiro JR, Al-Shuaibi MA, Abraham VA, Kumar TP, 1999. A technique to assess the longevity of the pheromone (Ferrolure) used in trapping the date red palm weevil Rhynchophorous ferrugineus Oliv. Sultan Qaboos University Journal for Scientific Research - Agricultural Sciences, 4(1):5-9; 11 ref.

Faleiro JR, Chellapan M, 1999. Attraction of red palm weevil Rhynchophorus ferrugineus Oliv. to ferrugineol based pheromone lures in coconut gardens. Journal of Tropical Agriculture, 37(1/2):60-63; 15 ref.

Fitzgibbon F, Allsopp PG, Barro PJde, 1999. Chomping, boring and sucking on our doorstep - the menace from the north. Proceedings of the 1999 Conference of the Australian Society of Sugar Cane Technologists, Townsville, Queensland, Australia, 27-30 April 1999., 149-155; 12 ref.

Flach M, 1983. The sago palm. FAO Plant Production and Protection Paper, No. 47:85 pp.

Ganapathy T, Rajamanickam K, Raveendran TS, Lourduraj AC, Kennedy FJS, 1992. Status of coconut cultivation in Pollachi tract. II Prevalence of pests and diseases Indian Coconut Journal (Cochin), 23(3):4-6

Gopinadhan PB, Mohandas N, Nair KPV, 1990. Cytoplasmic polyhedrosis virus infecting redpalm weevil of coconut. Current Science, 59(11):577-580

Gunawardena NE, Kern F, Janssen E, Meegoda C, SchSfer D, Vostrowsky O, Bestmann HJ, 1998. Host attractants for red weevil, Rhynchophorus ferrugineus: identification, electrophysiological activity, and laboratory bioassay. Journal of Chemical Ecology, 24(3):425-437; 41 ref.

Hallett RH, Oehlschlager AC, Borden JH, 1999. Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). International Journal of Pest Management, 45(3):231-237; 32 ref.

Hanounik SB, 1998. Steinernematids and Heterorhabditids as biological control agents for red palm weevil (Rhynchophorus ferrugineus Oliv.). Proceedings of the international conference on integrated pest management, Muscat, Sultanate of Oman, 23-25 February, 1998. Sultan Qaboos University Journal for Scientific Research Agricultural Sciences, 3:95-102.

Hartley CWS, 1977. The oil palm. The oil palm. Longman. London UK, xviii + 806pp.

Hernández-Marante D, Folk F, Sánchez A, Fernández-Escobar R, 2003. Control of red palm weevil (Rhynchophorus ferrugineus Olivier) using trunk injections and foliar sprays. (Control del curculiónido ferruginoso de las palmeras (Rhynchophorus ferrugineus Olivier) mediante inyecciones al tronco y pulverización foliar.) Boletín de Sanidad Vegetal, Plagas, 29(4):563-573.

Hutson JC, 1933. The red weevil of coconut. Dept. Agric. Ceylon. Leaflet No. 22.

IPPC, 2007. Red Palm Weevil. IPPC Official Pest Report, No. TR-3/1. Rome, Italy: FAO. https://www.ippc.int/IPP/En/default.jsp

IPPC, 2013. Presence of Rhynchophorus ferrugineus (Olivier) in Gozo. IPPC Official Pest Report, No. MLT-02/1, No. MLT-02/1. Rome, Italy: FAO. https://www.ippc.int/countries/pestreport/

IPPC, 2015. Rhynchophorus ferrugineus (Red Palm Weevil) - Eradicated from California. IPPC Official Pest Report, No. USA-41/1. Rome, Italy: FAO. https://www.ippc.int/

Jacas JA, Dembilio Ó, Llácer E, 2011. Research activities focused on management of red palm weevil at the UJI-IVIA Associated Unit (Region of Valencia, Spain). Bulletin OEPP/EPPO Bulletin, 41(2):122-127. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2338

Jaya S, Suresh T, Sobhitha-Rani RS, Sreekumar S, 2000. Evidence of seven larval instars in the red palm weevil, Rhynchophorus ferrugineus Oliv. reared on sugarcane. Journal of Entomological Research, 24(1):27-31; 14 ref.

Ju RuiTing, Li YueZhong, Du YuZhou, Chi XingZhen, Yan Wei, Xu Ying, 2006. Alert to spread of an invasive alien species, red palm weevil, Rhynchophorus ferrugineus. Chinese Bulletin of Entomology, 43(2):159-163.

Ju RuiTing, Wang Feng, Xiao YuYu, Li YueZhong, Du YuZhou, 2010. Cold hardiness of the red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) in Shanghai. Acta Entomologica Sinica, 53(2):226-232. http://www.insect.org.cn

Justin CGL, Leelamathi M, Thangaselvabai T, Johnson SBN, 2008. Bioecology and management of the red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) on coconut - a review. Agricultural Reviews, 29(2):117-124.

Kalshoven LGE, Laan PA van der (Reviser and translator), 1981. Pests of crops in Indonesia (revised). Jakarta, Indonesia: Ichtiar Baru, 701 pp.

Kehat M, 1999. Threat to date palms in Israel, Jordan and the Palestinian Authority, by the red palm weevil, Rhynchophorus ferrugineus. Phytoparasitica, 27(3):241-242; 6 ref.

Kurian C, Antony J, Abraham VA, Natarajan P, 1976. Pest management in coconut gardens. An integrated approach. Indian Farming, 7(9):31-35.

Kurian C, Mathen K, 1971. Red palm weevil - hidden enemy of coconut palm. Indian Farming, 21(1):29-31

Leefmans S, 1920. De Palmsnuitkever (Rhynchophorus ferrugineus Olivier). Mededelingen van het Instituut voor Plantenziekten, No. 43, Department van Landbouw, Nigverheld en handel Batavia.

Li YueZhong, Zhu ZengRong, Ju RuiTing, Wang LianSheng, 2009. The red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), newly reported from Zhejiang, China and update of geographical distribution. Florida Entomologist, 92(2):386-387. http://www.fcla.edu/FlaEnt/

Liao CT, Chen CC, 1997. Primary study the insect pests, hosts and ecology of weevil attacking ornamental palm seedlings. Bulletin of Taichung District Agricultural Improvement Station, 57:43-48.

Llácer E, Martínez de Altube MM, Jacas JA, 2009. Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. BioControl, 54(4):559-565. http://www.springerlink.com/link.asp?id=102853

Maheswari TU, Rao NV, 2000. Trapping of Rynchophorus ferrugenius Olivier (Curculionidae: Coleoptera) with pheromone trap. Insect Environment, 6(2):76-77.

Mahindapala R, 1978. Pests and diseases of coconut and their control. Ceylon Cocon. Quart., 29:97-102.

Mathen K, Kurian C, 1966. Prophylactic control of Rhynchophorus ferrugineus Fabr., the coconut weevil. Indian J. Agric. Sci., 36(6):285-286.

Menon KPV, Pandalai KM, 1960. Pests. In: The Coconut palm. A Monograph. Inrankulam, South India: Indian Central Committee, 261-265.

Mercer CWL, 1994. Sago grub production in Labu swamp near Lae, Papua New Guinea. Klinkii, 5(2):30-34; 11 ref.

Milek TM, Simala M, 2011. First record of [Rhynchophorus ferrugineus (Olivier, 1790)] - red palm weevil in Croatia. (Prvi nalaz Rhynchophorus ferrugineus (Olivier, 1790) - crvene palmine pipe u Hrvatskoj.) Glasilo Biljne Zastite, 11(6):397-406. http://www.hdbz.hr

Milek TM, Simala M, 2013. First records of the red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) and the Palm Borer, Paysandisia archon (Burmeister, 1880) in Croatia [Conference poster]. In: Zbornik Predavanj in Referatov, 11. Slovenskega Posvetovanja o Varstvu Rastlin Z Mednarodno Udelezbo (in okrogle mize o zmanjsanju tveganja zaradi rabe FFS v okviru projekta CropSustaIn), Bled, Slovenia, 5.-6. Marec 2013 [ed. by Trdan, S.\Macek, J.]. Ljubljana, Slovenia: Plant Protection Society of Slovenia, 366-368.

Misra RM, 1998. Insect pests of oil palm (Elaeis guineensis L.) from India and their management. Indian Journal of Forestry, 21(3):259-263.

Monzer MA, Al-Elimi MH, 2002. Further investigation on the impact of the environment in date palm infested with Rhynchophorus ferrugineus on entomopathogenic nematodes: I. Preliminary identification of potent chemical volatiles. Egyptian Journal of Biological Pest Control, 12(1):39-42.

Muralidharan CM, Vaghasia UR, Sodagar NN, 1999. Population, food preference and trapping using aggregation pheromone (ferrugineol) on red palm weevil (Rhynchophorus ferrugineus). Indian Journal of Agricultural Sciences, 69(8):602-604; 9 ref.

Murphy ST, Briscoe BR, 1999. The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News and Information, 20(1):35N-46N; 2 pp. of ref.

Murthy NBK, Amonkar SV, 1974. Effect of a natural insecticide from garlic (Allium sativum L.) & its synthetic form (diallyl-disulphide) on plant pathogenic fungi. Indian Journal of Experimental Biology, 12(2):208-209

Nair CPR, Sathiamma B, Chandrika Mohan, Murali Gopal, 1998. Newer approaches in the integrated pest management in coconut. Indian Coconut Journal (Cochin), 29(4):99-103; 24 ref.

Nakash J, Osem Y, Kehat M, 2000. A suggestion to use dogs for detecting red palm weevil (Rhynchophorus ferrugineus) infestation in date palms in Israel. Phytoparasitica, 28(2):153-155; 15 ref.

NAPPO, 2010. Phytosanitary Alert System: First US detection of the Red Palm Weevil, Rhynchophorus ferrugineus, in California. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=468

Nirula KK, Anthony J, Menon KPV, 1953. The red palm weevil and its control. Proc. 40th Session Indian Scl. Cong., 147-148.

Perez AL, Hallett RH, Gries R, Gries G, Oehlschlager AC, Borden JH, 1996. Pheromone chirality of Asian palm weevils, Rhynchophorus ferrugineus (Oliv.) and R. vulneratus (Panz.) (Coleoptera: Curculionidae). Journal of Chemical Ecology, 22(2):357-368; 26 ref.

Peter C, 1989. A note on the mites associated with the red palm weevil, Rhyncophorus ferrugineus Oliv. in Tamil Nadu. Journal of Insect Science, 2(2):160-161

Pillai GB, 1987. Integrated pest management in plantation crops. Journal of Coffee Research, 17(1):150-153

Prabhu ST, Patil RS, 2009. Studies on the biological aspects of red palm weevil, Rhynchophorus ferrugineus (Oliv.). Karnataka Journal of Agricultural Sciences, 22(3):732-733. http://203.129.218.157/ojs/index.php/kjas/article/viewFile/1243/1187

Rahalkar GW, Harwalkar MR, Rananavare HD, Shantaram K, Ayengar ARG, 1973. Laboratory studies on radiation sterilization of the red palm weevil (Rhynchophorus ferrugineus Oliv.) males. In: Nayar NM, ed. Journal of Plantation Crops, 1:141-145

Rahalkar GW, Harwalkar MR, Rananavare HO, 1975. Laboratory studies on sterilization of the male red palm weevil, Rhynchophorus ferrugineus Oliv. International Atomic Energy Agency; Food and Agriculture Organization: Sterility principle for insect control 1974. Proceedings of the symposium on the sterility principle for insect control jointly organized by the IAEA and the FAO of the United Nations and held in Innsbruck, 22-26 July 1974. International Atomic Energy Agency. Vienna Austria, 261-267

Rajapakse CNK, Gunawardena NE, Perera KFG, 1998. Pheromone baited trap for the management of red palm weevil, Rhynchophorus ferrugineus F. (Coleoptera: Curculionidae) population in coconut plantations. COCOS, 13:54-65; 12 ref.

Ram Dutta, Thakur NSA, Bag TK, Ngashepam Anita, Satish Chandra, Shishomvanao Ngachan, 2010. New record of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) on Arecanut (Areca catechu) from Meghalaya, India. Florida Entomologist, 93(3):446-448. http://www.fcla.edu/FlaEnt/

Ramachandran CP, 1991. Effects of gamma radiation on various stages of red palm weevil, Rhynchophorus ferrugineus F. Journal of Nuclear Agriculture and Biology, 20(3):218-221

Ramachandran CP, 1998. The red palm weevil Rhynchophorus ferrugineus F.: a review and future strategies. Indian Coconut Journal (Cochin), 29(4):104-106; 25 ref.

Rananavare HD, Shantaram K, Harwalkar MR, Rahalkar GW, 1975. Method for the laboratory rearing of red palm weevil, Rhynchophorus ferrugineus Oliv. Journal of Plantation Crops, 3(2):65-67

Rao PVS, Subramaniam TR, Abraham EV, 1973. Control of the red palm weevil on coconut. Journal of Plantation Crops, 1(1/2):26-27

Reginald C, 1973. Principal Insect Pests. In: Coconuts. Tropical Agriculture Series, London, UK: Longmans.

Roda A, Kairo M, Damian T, Franken F, Heidweiller K, Johanns C, Mankin R, 2011. Red palm weevil (Rhynchophorus ferrugineus), an invasive pest recently found in the Caribbean that threatens the region. Bulletin OEPP/EPPO Bulletin, 41(2):116-121. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2338

Rugman-Jones PF, Hoddle CD, Hoddle MS, Stouthamer R, 2013. The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE, 8(10):e78379. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0078379

Sacchetti P, Camèra A, Granchietti A, Rosi MC, Marzialetti P, 2006. Identification, biology and spread of the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) in Italy. (Identificazione, biologia e diffusione del curculionide delle palme, Rhynchophorus ferrugineus (Olivier).) Informatore Fitopatologico, 56(6):35-40.

Sadakathulla S, Ramachandran TK, 1992. Avoid light trap in coconut gardens. Indian Coconut Journal (Cochin), 23(1):5

Salama HS, Abd-Elgawad MM, 2001. Isolation of heterorhabitid nematodes from palm tree planted areas and their implications in the red palm weevil control. Anzeiger fur Schadlingskunde, 74(2):43-45.

Salama HS, Zaki FN, Abdel-Razek AS, 2009. Ecological and biological studies on the red palm weevil Rhynchophorus ferrugineus (Olivier). Archives of Phytopathology and Plant Protection, 42(4):392-399. http://journalsonline.tandf.co.uk/link.asp?id=300198

Saleh MME, Alheji M, 2003. Biological control of red palm weevil with entomopathogenic nematodes in the eastern province of Saudi Arabia. Egyptian Journal of Biological Pest Control, 13(1/2):55-59.

Saleh MME, Hegazy G, Salem M, Hanounik SB, Al-Mohanna O, Alheji MA, 2004. Persistence of Steinernema carpocapsae (Nematoda: Steinernematidae) and Beauveria bassiana (Deuteromycotina: Hyphomycetes) in soil around date palm trunks and their effect on adults of Rhynchophorus ferrugineus. Egyptian Journal of Biological Pest Control [Proceedings of the 1st Arab Conference for Applied Biological Pest Control, Cairo, Egypt, 5 to 7 April 2004.], 14(1):141-145.

Sathiamma B, Abraham VA, Kurian C, 1982. Integrated pest management of the major pests of coconut. Indian Coconut Journal, 12(6/9):27-29

Shantappa PB, Viswanath BA, Sulladmath VV, 1979. Red palm weevil Rhynchophorus ferrugineus from the inland plantations of Karnataka. Current Research, 8(2):32

Soenardi SA, Hariadi B, 1978. Control of stem and top borers of coconut palms. Pemberitaan Lembaga Penelitian Tanarnan Industri, Indonesia, No. 28, 45-50.

Tabibullah M, Ahmad KU, 1976. Performance of two exotic typica coconut cultivars as compared with the local one. Bangladesh Agriculture, 4(2):11-17.

Tapia G, Ruiz MA, Téllez MM, 2011. Recommendations for a preventive strategy to control red palm weevil (Rhynchophorus ferrugineus, Olivier) based on the use of insecticides and entomopathogenic nematodes. Bulletin OEPP/EPPO Bulletin, 41(2):136-141. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2338

Téllez MM, Martín MM, Cabello T, 2006. Rhynchophorus ferrugineus - The red palm weevil, a serious pest of palms. (Rhynchophorus ferrugineus: el picudo rojo, plaga de gran severidad en palmeras.) QEJ, No.142:24-28. http://www.horticom.com

Triggiani O, Tarasco E, 2011. Evaluation of the effects of autochthonous and commercial isolates of steinernematidae and heterorhabditidae on Rhynchophorus ferrugineus. Bulletin of Insectology, 64(2):175-180. http://www.bulletinofinsectology.org/

Vidyasagar PSPV, Al-Saihati AA, Al-Mohanna OE, Subbei AI, Abdul Mohsin AM, 2000. Management of red palm weevil Rhynchophorus ferrugineus Oliv., a serious pest of date palm in Al Qatif, Kingdom of Saudi Arabia. Journal of Plantation Crops, 28(1):35-43; 12 ref.

Vidyasagar PSPV, Mohammed Hagi, Abozuhairah RA, Al-Mohanna OE, Al-Saihati AA, 2000. Impact of mass pheromone trapping on red palm weevil: adult population and infestation level in date palm gardens of Saudi Arabia. Planter, 76(891):347-355; 19 ref.

Wang Feng, Ju RuiTing, Li YueZhong, Xu Ying, Du YuZhou, Zhou JianMing, 2009. Lab observation for biological characteristics and morphology of Rhynchophorus ferrugineus. Chinese Bulletin of Entomology, 46(4):556-560. http://www.ilib.cn/P-kczs.html

Wang LianSheng, Chen ZhiSheng, Qian ZuQi, She DeSong, Ma JianQing, Zhang Jun, Liu ZhiLong, Wang Hua, Zhou XiongFei, He ShiDe, Wang Gang, 2008. Rhynchophorus ferrugineus, a new record of Curculionidae in Zhejiang. Journal of Zhejiang Forestry Science and Technology, 28(4):56-59. http://scholar.ilib.cn/I-zjlykj.2005.02.html

Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp.

Wattanapongsiri A, 1966. A revision of the Genera Rhynchophorus and Dynamis. Department of Agricultural Science Bulletin. Bangkok, Thailand.

Distribution Maps

Top of page
Distribution map United Arab Emirates: Present
CABI/EPPO, 2010; EPPO, 2014United Arab Emirates: Present
CABI/EPPO, 2010; EPPO, 2014Albania: Present
CABI/EPPO, 2010; EPPO, 2014Netherlands Antilles: Present, few occurrences
EPPO, 2014; CABI/EPPO, 2010Australia: Present
EPPO, 2014; CABI/EPPO, 2010Australia
See regional map for distribution within the countryAruba: Present
Roda et al., 2011Bangladesh: Widespread
Tabibullah & Ahmad, 1976; APPPC, 1987; CABI/EPPO, 2010; EPPO, 2014Bahrain: Present
CABI/EPPO, 2010; EPPO, 2014Bahrain: Present
CABI/EPPO, 2010; EPPO, 2014China: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014China: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014China
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryCuraçao: Present
Roda et al., 2011Cyprus: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Cyprus: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Egypt: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Spain: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Spain: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Spain
See regional map for distribution within the countrySpain
See regional map for distribution within the countrySpain
See regional map for distribution within the countryFinland: Absent, no pest record
EPPO, 2014France: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010France
See regional map for distribution within the countryFrance
See regional map for distribution within the countryGeorgia (Republic of): Present
CABI/EPPO, 2010; EPPO, 2014Georgia (Republic of): Present
CABI/EPPO, 2010; EPPO, 2014Greece: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Greece: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Greece
See regional map for distribution within the countryGreece
See regional map for distribution within the countryGreece
See regional map for distribution within the countryCroatia: Present
Milek & Simala, 2011; Milek & Simala, 2013Indonesia: Widespread
CABI/EPPO, 2010; EPPO, 2014Indonesia: Widespread
CABI/EPPO, 2010; EPPO, 2014Indonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIndonesia
See regional map for distribution within the countryIsrael: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014Israel: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014India: Widespread
CABI/EPPO, 2010; EPPO, 2014India
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIraq: Present
CABI/EPPO, 2010; EPPO, 2014Iraq: Present
CABI/EPPO, 2010; EPPO, 2014Iraq: Present
CABI/EPPO, 2010; EPPO, 2014Iran: Present
Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014Iran: Present
Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014Iran: Present
Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014Italy: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Italy
See regional map for distribution within the countryItaly
See regional map for distribution within the countryItaly
See regional map for distribution within the countryItaly
See regional map for distribution within the countryJordan: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014Jordan: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014Japan: Present
CABI/EPPO, 2010; EPPO, 2014Japan
See regional map for distribution within the countryCambodia: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Kuwait: Present
CABI/EPPO, 2010; EPPO, 2014Kuwait: Present
CABI/EPPO, 2010; EPPO, 2014Laos: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Lebanon: Present
EPPO, 2014Lebanon: Present
EPPO, 2014Lebanon: Present
EPPO, 2014Sri Lanka: Present
CABI/EPPO, 2010; EPPO, 2014Libya: Present
Al-Eryan et al., 2010; CABI/EPPO, 2010; EPPO, 2014Morocco: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Morocco: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Myanmar: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Malta: Present
IPPC, 2013; CABI/EPPO, 2010; EPPO, 2014Malta: Present
IPPC, 2013; CABI/EPPO, 2010; EPPO, 2014Malaysia: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Malaysia
See regional map for distribution within the countryMalaysia
See regional map for distribution within the countryOman: Present
CABI/EPPO, 2010; EPPO, 2014Oman: Present
CABI/EPPO, 2010; EPPO, 2014Papua New Guinea: Present
Mercer, 1994; CABI/EPPO, 2010; EPPO, 2014Papua New Guinea: Present
Mercer, 1994; CABI/EPPO, 2010; EPPO, 2014Philippines: Present
Copeland, 1931; Braza, 1988; CABI/EPPO, 2010; EPPO, 2014Philippines: Present
Copeland, 1931; Braza, 1988; CABI/EPPO, 2010; EPPO, 2014Pakistan: Present
CABI/EPPO, 2010; EPPO, 2014Portugal: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Portugal
See regional map for distribution within the countryQatar: Present
CABI/EPPO, 2010; EPPO, 2014Saudi Arabia: Widespread
Bokhari & Abuzuhira, 1992; CABI/EPPO, 2010; EPPO, 2014Saudi Arabia: Widespread
Bokhari & Abuzuhira, 1992; CABI/EPPO, 2010; EPPO, 2014Solomon Islands: Present
CABI/EPPO, 2010; EPPO, 2014Singapore: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Slovenia: Present, few occurrences
EPPO, 2014; CABI/EPPO, 2010Syria: Present
EPPO, 2014; CABI/EPPO, 2010Syria: Present
EPPO, 2014; CABI/EPPO, 2010Syria: Present
EPPO, 2014; CABI/EPPO, 2010Thailand: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Tunisia: Present
EPPO, 2011; EPPO, 2014Tunisia: Present
EPPO, 2011; EPPO, 2014Turkey: Restricted distribution
IPPC, 2007; CABI/EPPO, 2010; EPPO, 2014Turkey: Restricted distribution
IPPC, 2007; CABI/EPPO, 2010; EPPO, 2014Turkey: Restricted distribution
IPPC, 2007; CABI/EPPO, 2010; EPPO, 2014Taiwan: Present
Liao & Chen, 1997; CABI/EPPO, 2010; EPPO, 2014Taiwan: Present
Liao & Chen, 1997; CABI/EPPO, 2010; EPPO, 2014Vietnam: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Vanuatu: Present
CABI/EPPO, 2010; EPPO, 2014Samoa: Present
Kalshoven & van der Laan, 1981; CABI/EPPO, 2010; EPPO, 2014Yemen: Present
EPPO, 2014; EPPO, 2014Yemen: Present
EPPO, 2014; EPPO, 2014
  • = Present, no further details
  • = Evidence of pathogen
  • = Widespread
  • = Last reported
  • = Localised
  • = Presence unconfirmed
  • = Confined and subject to quarantine
  • = See regional map for distribution within the country
  • = Occasional or few reports
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Distribution map (asia) United Arab Emirates: Present
CABI/EPPO, 2010; EPPO, 2014Bangladesh: Widespread
Tabibullah & Ahmad, 1976; APPPC, 1987; CABI/EPPO, 2010; EPPO, 2014Bahrain: Present
CABI/EPPO, 2010; EPPO, 2014China: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Fujian: Present
CABI/EPPO, 2010; EPPO, 2014Guangdong: Present
CABI/EPPO, 2010; EPPO, 2014Guangxi: Present
CABI/EPPO, 2010; EPPO, 2014Hainan: Present
CABI/EPPO, 2010; EPPO, 2014Hong Kong: Present
EPPO, 2014Jiangsu: Present
CABI/EPPO, 2010; EPPO, 2014Tibet: Present
CABI/EPPO, 2010; EPPO, 2014Yunnan: Present
CABI/EPPO, 2010; EPPO, 2014Zhejiang: Present
Wang et al., 2008; CABI/EPPO, 2010; EPPO, 2014Georgia (Republic of): Present
CABI/EPPO, 2010; EPPO, 2014Indonesia: Widespread
CABI/EPPO, 2010; EPPO, 2014Irian Jaya: Present
CABI/EPPO, 2010; EPPO, 2014Java: Present
Leefmans, 1920; CABI/EPPO, 2010; EPPO, 2014Kalimantan: Present
CABI/EPPO, 2010; EPPO, 2014Moluccas: Present
CABI/EPPO, 2010; EPPO, 2014Sulawesi: Present
CABI/EPPO, 2010; EPPO, 2014Sumatra: Present
CABI/EPPO, 2010; EPPO, 2014Israel: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014India: Widespread
CABI/EPPO, 2010; EPPO, 2014Andaman and Nicobar Islands: Present
CABI/EPPO, 2010; EPPO, 2014Andhra Pradesh: Present
Dhileepan, 1992; CABI/EPPO, 2010; EPPO, 2014Assam: Present
CABI/EPPO, 2010; EPPO, 2014Bihar: Present
CABI/EPPO, 2010; EPPO, 2014Daman: Present
CABI/EPPO, 2010; EPPO, 2014Diu: Present
CABI/EPPO, 2010; EPPO, 2014Goa: Present
CABI/EPPO, 2010; EPPO, 2014Gujarat: Present
CABI/EPPO, 2010; EPPO, 2014Kerala: Present
Gopinadhan et al., 1990; Dhileepan, 1991; CABI/EPPO, 2010; EPPO, 2014Karnataka: Present
Shantappa et al., 1979; CABI/EPPO, 2010; EPPO, 2014Maharashtra: Present
CABI/EPPO, 2010; EPPO, 2014Meghalaya: Present
Ram et al., 2010; EPPO, 2014Odisha: Present
CABI/EPPO, 2010; EPPO, 2014Tamil Nadu: Present
Peter, 1989; CABI/EPPO, 2010; EPPO, 2014Tripura: Present
CABI/EPPO, 2010; EPPO, 2014Uttar Pradesh: Present
CABI/EPPO, 2010; EPPO, 2014West Bengal: Present
CABI/EPPO, 2010; EPPO, 2014Iraq: Present
CABI/EPPO, 2010; EPPO, 2014Iran: Present
Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014Jordan: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014Japan: Present
CABI/EPPO, 2010; EPPO, 2014Kyushu: Present
Aman et al., 2000; CABI/EPPO, 2010; EPPO, 2014Cambodia: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Kuwait: Present
CABI/EPPO, 2010; EPPO, 2014Laos: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Lebanon: Present
EPPO, 2014Sri Lanka: Present
CABI/EPPO, 2010; EPPO, 2014Myanmar: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Malaysia: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Sabah: Present
CABI/EPPO, 2010; EPPO, 2014Sarawak: Present
Flach, 1983; CABI/EPPO, 2010; EPPO, 2014Oman: Present
CABI/EPPO, 2010; EPPO, 2014Papua New Guinea: Present
Mercer, 1994; CABI/EPPO, 2010; EPPO, 2014Philippines: Present
Copeland, 1931; Braza, 1988; CABI/EPPO, 2010; EPPO, 2014Pakistan: Present
CABI/EPPO, 2010; EPPO, 2014Qatar: Present
CABI/EPPO, 2010; EPPO, 2014Saudi Arabia: Widespread
Bokhari & Abuzuhira, 1992; CABI/EPPO, 2010; EPPO, 2014Singapore: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Syria: Present
EPPO, 2014; CABI/EPPO, 2010Thailand: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Turkey: Restricted distribution
IPPC, 2007; CABI/EPPO, 2010; EPPO, 2014Taiwan: Present
Liao & Chen, 1997; CABI/EPPO, 2010; EPPO, 2014Vietnam: Present
Waterhouse, 1993; CABI/EPPO, 2010; EPPO, 2014Yemen: Present
EPPO, 2014; EPPO, 2014
Distribution map (europe) Albania: Present
CABI/EPPO, 2010; EPPO, 2014Cyprus: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Spain: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Balearic Islands: Present
EPPO, 2014; CABI/EPPO, 2010Spain (mainland): Restricted distribution
CABI/EPPO, 2010Finland: Absent, no pest record
EPPO, 2014France: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Corsica: Transient: actionable, under eradication
EPPO, 2014; CABI/EPPO, 2010France (mainland): Present, few occurrences
CABI/EPPO, 2010Georgia (Republic of): Present
CABI/EPPO, 2010; EPPO, 2014Greece: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Crete: Present
EPPO, 2014; CABI/EPPO, 2010Greece (mainland): Restricted distribution
CABI/EPPO, 2010Croatia: Present
Milek & Simala, 2011; Milek & Simala, 2013Iraq: Present
CABI/EPPO, 2010; EPPO, 2014Iran: Present
Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014Italy: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Italy (mainland): Restricted distribution
CABI/EPPO, 2010Sicily: Present
CABI/EPPO, 2010; EPPO, 2014Sardinia: Present
EPPO, 2014; CABI/EPPO, 2010Lebanon: Present
EPPO, 2014Morocco: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Malta: Present
IPPC, 2013; CABI/EPPO, 2010; EPPO, 2014Portugal: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Portugal (mainland): Present
CABI/EPPO, 2010Slovenia: Present, few occurrences
EPPO, 2014; CABI/EPPO, 2010Syria: Present
EPPO, 2014; CABI/EPPO, 2010Tunisia: Present
EPPO, 2011; EPPO, 2014Turkey: Restricted distribution
IPPC, 2007; CABI/EPPO, 2010; EPPO, 2014
Distribution map (africa) United Arab Emirates: Present
CABI/EPPO, 2010; EPPO, 2014Bahrain: Present
CABI/EPPO, 2010; EPPO, 2014Cyprus: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Egypt: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Spain: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Canary Islands: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Greece: Restricted distribution
EPPO, 2014; CABI/EPPO, 2010Crete: Present
EPPO, 2014; CABI/EPPO, 2010Israel: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014Iraq: Present
CABI/EPPO, 2010; EPPO, 2014Iran: Present
Faghih, 1996; CABI/EPPO, 2010; EPPO, 2014Sicily: Present
CABI/EPPO, 2010; EPPO, 2014Jordan: Present, few occurrences
Kehat, 1999; CABI/EPPO, 2010; EPPO, 2014Kuwait: Present
CABI/EPPO, 2010; EPPO, 2014Lebanon: Present
EPPO, 2014Libya: Present
Al-Eryan et al., 2010; CABI/EPPO, 2010; EPPO, 2014Morocco: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Malta: Present
IPPC, 2013; CABI/EPPO, 2010; EPPO, 2014Oman: Present
CABI/EPPO, 2010; EPPO, 2014Saudi Arabia: Widespread
Bokhari & Abuzuhira, 1992; CABI/EPPO, 2010; EPPO, 2014Syria: Present
EPPO, 2014; CABI/EPPO, 2010Tunisia: Present
EPPO, 2011; EPPO, 2014Turkey: Restricted distribution
IPPC, 2007; CABI/EPPO, 2010; EPPO, 2014Yemen: Present
EPPO, 2014; EPPO, 2014
Distribution map (north america)
Distribution map (central america) Netherlands Antilles: Present, few occurrences
EPPO, 2014; CABI/EPPO, 2010Aruba: Present
Roda et al., 2011Curaçao: Present
Roda et al., 2011
Distribution map (south america)
Distribution map (pacific) Australia: Present
EPPO, 2014; CABI/EPPO, 2010Queensland: Present
CABI/EPPO, 2010; EPPO, 2014China: Restricted distribution
CABI/EPPO, 2010; EPPO, 2014Indonesia: Widespread
CABI/EPPO, 2010; EPPO, 2014Irian Jaya: Present
CABI/EPPO, 2010; EPPO, 2014Kalimantan: Present
CABI/EPPO, 2010; EPPO, 2014Sulawesi: Present
CABI/EPPO, 2010; EPPO, 2014Papua New Guinea: Present
Mercer, 1994; CABI/EPPO, 2010; EPPO, 2014Philippines: Present
Copeland, 1931; Braza, 1988; CABI/EPPO, 2010; EPPO, 2014Solomon Islands: Present
CABI/EPPO, 2010; EPPO, 2014Taiwan: Present
Liao & Chen, 1997; CABI/EPPO, 2010; EPPO, 2014Vanuatu: Present
CABI/EPPO, 2010; EPPO, 2014Samoa: Present
Kalshoven & van der Laan, 1981; CABI/EPPO, 2010; EPPO, 2014