Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

Continuing to use www.cabi.org means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Datasheet

Otiorhynchus sulcatus (vine weevil)

Summary

  • Last modified
  • 20 January 2015
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Otiorhynchus sulcatus
  • Preferred Common Name
  • vine weevil
  • Taxonomic Tree
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Colour illustration of leaf damage caused by adult O. sulcatus next to crescent-shaped larva and adult.
TitleDamaged leaf, larva and adult
CaptionColour illustration of leaf damage caused by adult O. sulcatus next to crescent-shaped larva and adult.
CopyrightAgrEvo
Colour illustration of leaf damage caused by adult O. sulcatus next to crescent-shaped larva and adult.
Damaged leaf, larva and adultColour illustration of leaf damage caused by adult O. sulcatus next to crescent-shaped larva and adult.AgrEvo

Identity

Top of page

Preferred Scientific Name

  • Otiorhynchus sulcatus (Fabricius, 1775)

Preferred Common Name

  • vine weevil

Other Scientific Names

  • Brachyrhinus sulcatus Fabricius
  • Curculio sulcatus Fabricius, 1775
  • Otiorhynchus linearis Stierlin, 1861

International Common Names

  • English: black vine weevil; cyclamen weevil; weevil, black vine; weevil, cyclamen; weevil, European strawberry
  • Spanish: escarbajito de la vid; gorgojo de la uva; gorgojo de la vid
  • French: charançon noir de la vigne; otiorrhynque de la vigne; otiorrhynque sillone

Local Common Names

  • Denmark: væksthussnudebille
  • Finland: uurrekorvakärsäkäs
  • Germany: Ruessler, Gefurchter Dickmaul-; Ruessler, Gefurchter Lappen-
  • Italy: oziorrinco della vite
  • Netherlands: Lapsnuittor, gegroefde; Taxuskever
  • Norway: veksthussnutebille
  • Sweden: farad öronvivel
  • Turkey: bag maymuncugu

EPPO code

  • OTIOSU (Otiorhynchus sulcatus)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Coleoptera
  •                         Family: Curculionidae
  •                             Genus: Otiorhynchus
  •                                 Species: Otiorhynchus sulcatus

Description

Top of pageEggs

The egg was described by Balachowsky (1963), Scherf (1964) and May (1994). It is subspherical, ca 1 mm in diameter, at first pearly-white, gradually becoming brown and finally black.

Larvae

The larva was described by Emden (1952) and described and figured by Anderson (1987), Lee and Morimoto (1988) and May (1994).

Body white, crescent-shaped, widest near thorax, tapered posteriorly; skin asperities semi-globular with only a more or less short, spinous point or spicule, especially on dorsal folds; with some prominent setae on each segment; body length 9.0-10.5 mm. Head free, subdepressed, emarginate posteriorly, widest behind middle; testaceous to pale ferruginous, a longitudinal strip over seta des 1 paler, anterior margin of head narrowly chestnut-brown, tentorial rib brown, mandibles bidentate apically, mandibular scrobe broadly and suffusedly paler; endocarina absent; pigmented ocellar spots small, but rather distinct; labium with premental sclerite with proximal margin 'Y'-shaped; head width 1.52-1.82 mm. Pronotum transverse with smooth rectangular plate. Abdominal segments each with 3 dorsal folds; spiracles on abdominal segments 1-8, lateral, bicameral. Anus terminal with 4 lobes.

Emden (1952) provided a key to the larvae of Otiorhynchus species, including sulcatus.

Pupae

The pupa was briefly described and figured by Scherf (1964) and May (1994). It is yellowish-white, with a maximum length of 10 mm and width at the pronotum of 2.6 mm. The urogomphi are relatively short and curved mesad.

Adults

Brown black, inconspicuous elytral pubescence varied with small patches of very slender squamiform yellow or brown scales, sometimes with metallic reflection; antennae and legs black, tarsi dark brown. Body length 7-11 mm. Head two times wider than long, with temples short and the borders parallel; rostrum slightly longer than wide, dilated apically with 2 dorsal carinae which unite to form an elongate median depression; antennal funicle elongate with segment 2 slightly longer than 1, segment 7 longer than wide, club elongate oval. Pronotum with disc densely covered with shining unisetate granules; without vibrissae laterally on anterior margin. Elytra oval, greatest width between anterior quarter to third, strongly punctate-striate, punctures separated by shining unisetate granules, interstices convex and irregularly tuberculate. Femora unidentate, metafemora with tooth on lower surface somewhat before apex; tarsal claws paired, free.

Joy (1932) and Morris (1997) provided keys to the Otiorhynchus species of the UK, whilst Hoffmann (1950) gave a key to the French species.

Distribution

Top of page

O. sulcatus was first detected in Hawaii, USA, at Kokee State Park on the island of Kauai, in March and April 1976 (Anon., 1976).

O. sulcatus was first found in Japan in 1981 in Sunto Gun, Shizuoka Prefecture (Masaki et al., 1984).

Records of O. sulcatus in Colombia (Seymour et al., 1985; EPPO, 2009) published in previous versions of the Compendium are based on an interception record which is considered invalid. O. sulcatus has not been recorded in Colombia by Barrigna-Tuñón (2013) or the Museum of Entomology, University of Valle, Colombia, and has not been reported in Colombia by the Institute of Natural Sciences, National University of Colombia. 

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

CountryDistributionLast ReportedOriginFirst ReportedInvasiveReferencesNotes

ASIA

JapanWidespreadMasaki et al., 1984; EPPO, 2014
-HonshuPresentMasaki & Ohto, 1995
Malaysia
-Peninsular MalaysiaPresentNHM, 1992

AFRICA

EgyptWidespreadSeymour et al., 1985; EPPO, 2014
Saint HelenaWidespreadDecelle & Voss, 1972; EPPO, 2014

NORTH AMERICA

CanadaRestricted distributionEPPO, 2014
-British ColumbiaPresentRutherford et al., 1987; Li et al., 1995; O'Brien & Wibmer, 1982; EPPO, 2014
-ManitobaPresentBousquet, 1991
-New BrunswickPresentZervos et al., 1994; O'Brien & Wibmer, 1982; EPPO, 2014
-Newfoundland and LabradorPresentO'Brien & Wibmer, 1982; EPPO, 2014
-Nova ScotiaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-OntarioPresentBousquet, 1991; EPPO, 2014
-Prince Edward IslandPresentBousquet, 1991; EPPO, 2014
-QuebecPresentLachance, 1993; O'Brien & Wibmer, 1982; EPPO, 2014
USAWidespreadEPPO, 2014
-AlaskaPresentBousquet, 1991; EPPO, 2014
-ArizonaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-ArkansasPresentO'Brien & Wibmer, 1982
-CaliforniaPresentPhillips, 1989; O'Brien & Wibmer, 1982; EPPO, 2014
-ConnecticutPresentSchread, 1972; Hanula, 1993; O'Brien & Wibmer, 1982; EPPO, 2014
-District of ColumbiaPresentEPPO, 2014
-HawaiiPresentAnon, 1976; EPPO, 2014
-IdahoPresentBaird et al., 1992; O'Brien & Wibmer, 1982; EPPO, 2014
-IllinoisPresentO'Brien & Wibmer, 1982; EPPO, 2014
-KansasPresentAnon, 1980; EPPO, 2014
-MainePresentO'Brien & Wibmer, 1982; EPPO, 2014
-MarylandPresentSmith & Raupp, 1986; O'Brien & Wibmer, 1982; EPPO, 2014
-MassachusettsPresentMulgrew, 1990; O'Brien & Wibmer, 1982; EPPO, 2014; van Driesche & Hauschild, 1987
-MichiganPresentO'Brien & Wibmer, 1982; EPPO, 2014
-MissouriPresentEPPO, 2014
-MontanaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-NevadaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-New HampshirePresentO'Brien & Wibmer, 1982; EPPO, 2014
-New JerseyPresentO'Brien & Wibmer, 1982; EPPO, 2014
-New MexicoPresentO'Brien & Wibmer, 1982; EPPO, 2014
-New YorkPresentZepp et al., 1979; O'Brien & Wibmer, 1982; EPPO, 2014
-North CarolinaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-OhioPresentNielsen & Roth, 1985; O'Brien & Wibmer, 1982; EPPO, 2014
-OregonPresentla & Lone Clarke, 1981; Berry et al., 1997; O'Brien & Wibmer, 1982; EPPO, 2014
-PennsylvaniaPresentOwen et al., 1991; O'Brien & Wibmer, 1982; EPPO, 2014
-Rhode IslandPresentO'Brien & Wibmer, 1982; EPPO, 2014
-South DakotaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-TexasPresentO'Brien & Wibmer, 1982
-UtahPresentO'Brien & Wibmer, 1982; EPPO, 2014
-VermontPresentO'Brien & Wibmer, 1982; EPPO, 2014
-VirginiaPresentO'Brien & Wibmer, 1982; EPPO, 2014
-WashingtonPresentCone, 1963; Cone, 1968; Shanks, 1991; O'Brien & Wibmer, 1982; EPPO, 2014
-WisconsinPresentO'Brien & Wibmer, 1982; EPPO, 2014

SOUTH AMERICA

ChileWidespreadPrado, 1988; Wibmer & O'Brien, 1986; EPPO, 2014
ColombiaAbsent, invalid recordSeymour et al., 1985; EPPO, 2014; Instituto Colombiano Agropecuario, 2013, personal communication

EUROPE

AustriaWidespread****Bluel & Kaserer, 1989; EPPO, 2014
BelgiumWidespreadCoremans-Pelseneer & Tillemans, 1991; Casteels et al., 1995; EPPO, 2014
BulgariaPresentIgnatov & Kirkov, 1972
CroatiaPresentKacic et al., 2009
Czech RepublicPresentMracek et al., 1993; EPPO, 2014
Czechoslovakia (former)Widespread****
DenmarkWidespreadStenseth, 1979; Silfverberg, 1992; EPPO, 2014
EstoniaPresentSilfverberg, 1992
FinlandWidespreadSilfverberg, 1992; EPPO, 2014
FranceWidespreadPommier, 1986; Hoffmann, 1950; EPPO, 2014
GermanyWidespread****von & Reibnitz Backhaus, 1994; Skadow & Karl, 1967; EPPO, 2014
HungaryWidespreadTusnadi & Merkl, 1985; EPPO, 2014
IrelandWidespreadSchirocki & Hague, 1994b; Lola-Luz et al., 2003; EPPO, 2014
ItalyWidespreaddel & Bene Parrini, 1986; Baraldi & Baraldi, 1996; Abbazzi et al., 1995; EPPO, 2014
MaltaWidespreadSaliba, 1963; EPPO, 2014
NetherlandsWidespreadWesterman & van Zeeland, 1989; van Tol, 1993; EPPO, 2014
NorwayWidespreadAndersen, 1991; Silfverberg, 1992; EPPO, 2014
PolandWidespreadBaranowski & Dankowska, 1996; EPPO, 2014
PortugalPresentEPPO, 2014
-AzoresPresentMorris, 1997
-MadeiraPresentEPPO, 2014
Russian FederationRestricted distributionEPPO, 2014
-Russia (Europe)PresentShtakel'berg, 1949; EPPO, 2014
SerbiaRestricted distributionEPPO, 2014
SlovakiaPresentEPPO, 2014
SpainWidespreadEPPO, 2014
SwedenWidespread****Stenseth & Vik, 1979; Silfverberg, 1992; EPPO, 2014
SwitzerlandWidespreadSteiner, 1996a; Steiner, 1996b; EPPO, 2014
UKWidespread****Cross et al., 1995; Crook, 1996; Cross & Burgess, 1997; Graham et al., 1996; EPPO, 2014
-ScotlandPresentGordon et al., 2003
Yugoslavia (Serbia and Montenegro)Restricted distributionKovacevic, 1971

OCEANIA

AustraliaRestricted distributionEPPO, 2014
-TasmaniaPresentCurran, 1992; EPPO, 2014
New ZealandWidespreadBarratt et al., 1989a; Garnham & McNab, 1990; EPPO, 2014

Hosts/Species Affected

Top of pageScherf (1964) listed Fragaria vesca, Saxifraga sp., Taxus baccata, Rudbeckia laciniata, Cyclamen persicum and Vitis vinifera as food plants of O. sulcatus.

The reproductive success of O. sulcatus fed different foliar diets was compared to evaluate the suitability of known and potential hosts for adults. Foliar diets, arranged in order of decreasing fecundity, were Taxus cuspidata, T. canadensis, Kalmia latifolia and Cornus florida. Fecundity and length of preoviposition period were negatively correlated, indicating that the latter could be used to forecast potential fecundity (Maier, 1981).

In Japan, of 108 candidate plant species in 49 families, the adults of O. sulcatus fed on the leaves of 101 species, in 46 families. In tests with 68 candidate species in 29 families, the larvae fed on the roots of 55 species in 24 families. Of these, 90 species in 45 families are new food-plant records for the adults and 46 species in 21 families are new food-plant records for the larvae. The results indicated that the preferred food-plants of both adults and larvae are in the family Rosaceae (Masaki et al., 1984).

Food preferences of O. sulcatus adults were studied in the laboratory at LD 16:8 with corresponding temperatures of 23 and 17°C and 80% RH, using five plant species (Fragaria grandiflora, Chenopodium album, Senecio vulgaris, Rhododendron ponticum and Fuchsia spp.). R. ponticum was the least preferred plant, while strawberry was the most preferred (Gembauffe et al., 1990).

Host Plants/Plants Affected

Top of page
Plant nameFamilyContext
AstilbeSaxifragaceaeOther
BegoniaBegoniaceaeOther
Begonia cucullata var. hookeri (Perpetual begonia)BegoniaceaeOther
CamelliaTheaceaeOther
Camellia japonica (camellia)TheaceaeOther
Capsella bursa-pastoris (shepherd's purse)BrassicaceaeOther
Chenopodium album (fat hen)ChenopodiaceaeWild host
Chrysanthemum (daisy)AsteraceaeOther
Cissus rhombifolia (grape ivy)VitaceaeOther
Cornus florida (Flowering dogwood)CornaceaeOther
CorylusBetulaceaeOther
CotoneasterRosaceaeOther
Cotoneaster bullatusRosaceaeOther
CryptomeriaTaxodiaceaeOther
CyclamenPrimulaceaeMain
Cyclamen persicum (cyclamens)PrimulaceaeMain
Erica (heaths)EricaceaeOther
Euonymus (spindle trees)CelastraceaeOther
Euonymus alatus (winged spindle)CelastraceaeOther
Euonymus fortunei (wintercreeper)CelastraceaeOther
Fragaria (strawberry)RosaceaeMain
Fragaria ananassa (strawberry)RosaceaeOther
Fragaria vesca (wild strawberry)RosaceaeOther
FuchsiaOnagraceaeOther
Gaultheria shallon (salal)EricaceaeOther
Gerbera (Barbeton daisy)AsteraceaeOther
Hedera (Ivy)AraliaceaeOther
Humulus lupulus (hop)CannabaceaeOther
Impatiens (balsam)BalsaminaceaeOther
Juniperus horizontalis (creeping juniper)CupressaceaeOther
KalanchoeCrassulaceaeOther
Kalmia latifolia (Mountain laurel)EricaceaeOther
Ligustrum vulgare (common privet)OleaceaeOther
Liquidambar styraciflua (Sweet gum)HamamelidaceaeOther
Parthenocissus tricuspidata (Boston ivy)VitaceaeOther
Picea pungens (blue spruce)PinaceaeOther
Pinus contorta (lodgepole pine)PinaceaeOther
Populus (poplars)SalicaceaeOther
Primula (Primrose)PrimulaceaeOther
Primula polyanthaPrimulaceaeOther
Prunus laurocerasus (cherry laurel)RosaceaeOther
Rhododendron (Azalea)EricaceaeOther
Rhododendron catawbienseEricaceaeOther
Rhododendron ponticum (rhododendron)EricaceaeOther
Rhododendron simsii (Sim's azalea)EricaceaeOther
Rosa (roses)RosaceaeOther
Rubus idaeus (raspberry)RosaceaeOther
Rudbeckia laciniata (cutleaf coneflower)AsteraceaeOther
Sansevieria trifasciata (mother-in-law’s tongue)AgavaceaeOther
Saxifraga (saxifrage)SaxifragaceaeOther
Schefflera (umbrella tree)AraliaceaeOther
Sedum (stonecrop)CrassulaceaeOther
Sonchus oleraceus (common sowthistle)AsteraceaeOther
Taraxacum officinale complex (dandelion)AsteraceaeWild host
Taxus (yew)TaxaceaeOther
Taxus baccata (English yew)TaxaceaeOther
Taxus cuspidata (Japanese yew)TaxaceaeOther
Taxus mediaTaxaceaeOther
ThujaCupressaceaeOther
Thuja occidentalis (Eastern white cedar)CupressaceaeOther
Thuja plicata (western redcedar)CupressaceaeOther
Trifolium repens (white clover)FabaceaeOther
Tsuga canadensis (eastern hemlock)PinaceaeOther
Vaccinium (blueberries)EricaceaeOther
Viola (violet)ViolaceaeOther
Vitis (grape)VitaceaeOther
Vitis vinifera (grapevine)VitaceaeMain

Growth Stages

Top of pageFlowering stage, Fruiting stage, Vegetative growing stage

Symptoms

Top of pageIn south-central Washington, USA, adults of O. sulcatus fed on the berry pedicels and cluster stems of Concord grapes (Cone, 1963).

In central Washington, USA, the larvae of O. sulcatus fed on the roots of Concord grapes, first on the phloem tissue, girdling the roots, but the xylem was left intact, except in cases of severe injury (Cone, 1968).

In Berlin, Germany, O. sulcatus larval damage to the roots of Sansevieria trifasciata did not at first result in the visible withering of the leaves noticed on less sturdy plants, but it was severe (Skadow and Karl, 1967).

In Hungary, the adults of O. sulcatus attacked the flowers of Rhododendron simsii and Gerbera sp. leaving spots of excreta on them, but the leaves remained intact (Tusnadi and Merkl, 1985).

After hatching, the larvae move to the roots of strawberry, killing the plants if they attack the main root just below the soil surface (Evenhuis, 1978).

The larvae attack the collar and roots and the adults the leaves and flowers in Italy (Lozzia, 1983).

Symptoms List

Top of page
SignLife StagesType

Fruit

premature drop

Inflorescence

external feeding
frass visible

Leaves

external feeding

Roots

external feeding

Whole plant

external feeding
plant dead; dieback

Biology and Ecology

Top of pageAccording to Morris (1997), O. sulcatus is mainly ground-living, though it is occasionally found on herbaceous vegetation, less frequently on trees.

It is parthenogenetic over most of its range, although bisexual races are known from Italy (Morris, 1997).

In Denmark, the females first appear in June, but do not become numerous until July. They feed on the leaves of strawberry and begin to oviposit after 4-6 days, laying several hundred eggs each over a period. The larvae hatch in 1-3 weeks according to temperature and feed on small roots in the soil, so that they are hard to detect at first. They overwinter and cause the major part of the damage in April-May of the next year, when the whole root system of strawberry plants may be destroyed. They pupate between late May and the end of June. At this time, old adults from the previous year are still present and laying eggs, but they are less prolific than adults of the new generation. Development is very dependent on temperature, and plastic covers or other mulches can speed it up by a month or more, and in heated greenhouse conditions oviposition may continue throughout the year (Esberg, 1977).

In the Lago Maggiore district of Italy, O. sulcatus has one generation a year, but development times varied greatly with temperature and were different in field and greenhouse crops. In the field, eggs were present from mid-April to early June, larvae from late May to early October, pupae from late September to the end of November, and adults (which overwintered) from the beginning of November to mid-April. The main larval damage occurred in the summer in the field, and in the winter in the greenhouse (Lozzia, 1983).

The biology of O. sulcatus in a commercial vineyard in coastal California, USA, was studied in 1984-86. Adult emergence began in the first week of April and continued until early July, with peaks in mid- to late May, but the pattern differed from year to year. Oviposition began in mid-May and continued for 6-8 weeks (Phillips, 1989).

The biology of O. sulcatus was studied in the laboratory at 20-22°C and LD 16:8 on strawberry leaves. Eggs were transferred to Impatiens plants at 20°C and LD 14:10. The time from pupation to adult emergence was 14.10 days at 20°C and newly emerged adults remained in the pupal cells for 2-5 days following emergence. The pre-oviposition period lasted 5-23 weeks, with the majority (94%) of adults beginning oviposition 5-8 weeks after emergence. The 32 adults which survived the first weeks after emergence had a mean longevity of 46.5 weeks. Mean fecundity was 830 eggs/adult, with a viability of 80.8%. Two distinct egg-laying cycles were observed: the first extended from late spring to October and the second from late November until the following summer. A third cycle extending into the spring of the final year was also indicated (Moorhouse et al., 1992).

In Idaho, USA, although some adults survived winter conditions, O. sulcatus overwintered primarily as developing larvae associated with hop root systems 5-50 cm deep in the soil. Pupation began in mid-April with soil temperatures of 15-17°C and concluded in mid- to late April. Adult emergence began in early May and was complete by late May to early June in 1986-88. The preoviposition period averaged 26 days in the field. The mean number of eggs laid per adult female was 290 (with a range of 22-1230). Eggs hatched in 12-22 days at 21°C (Baird et al., 1992).

In Japan, the development of O. sulcatus was investigated at constant temperatures of 12, 15, 18, 21 and 26°C. The development threshold temperatures for eggs, larvae plus prepupae, pupae, and the preoviposition period were 6.32, 2.45, 6.09 and 8.44°C, respectively. The thermal constants for eggs, larvae plus prepupae, pupae and the preoviposition period were 186.43, 2061.93, 182.85 and 571.10 day-degrees C, respectively. The rate of development from the first to the fifth larval instar was greater at higher temperatures, but development of the sixth and seventh instars was slower at higher temperatures. The developmental zero of the first to fifth instars was -0.66, -0.40, 1.66, 2.83 and 2.40°C, respectively. Almost all larvae pupated at temperatures between 12 and 21°C, but at 24 and 26°C, only one larva pupated. Larvae moulted 4-5 times at 15°C, 5-6 times at 18 and 21°C, 6-8 times at 24°C, and 6-9 times at 26°C (Masaki and Ohto, 1995). In Belgium, the time of appearance of O. sulcatus varied from year to year and was largely dependent on weather conditions (temperature) and type of culture (open field, container culture or greenhouse) (Casteels et al., 1995).

The six larval instars of O. sulcatus completed development from eggs inoculated onto container-grown rhododendrons in 84 days when grown indoors at 18-22°C or 211 days outdoors in Oregon, USA. Larval mortality was greatest during instars I-III. During instars IV-VI, mortality increased with increasing insect density. Underground stem tissue was fed on exclusively by instars IV-VI, and the amount of tissue removed increased with larval density (la Lone and Clarke, 1981).

Natural Enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Beauveria bassianaPathogenLarvaeNew Zealand
Beauveria brongniartiiPathogen
Heterorhabditis bacteriophoraParasiteNew Zealand
Heterorhabditis heliothidisParasiteWashington
Metarhizium anisopliaePathogenAdults/Larvae/Pupae
Metarhizium flavoviridePathogenLarvae/Pupae
Paecilomyces farinosusPathogen
Paecilomyces fumosoroseusPathogenAdults/Larvae
Pandelleia otiorrhynchiParasiteAdults
Pandelleia sexpunctataParasiteAdults
Steinernema carpocapsaeParasite
Steinernema feltiaeParasite
Steinernema glaseriParasite
Tetramorium caespitumPredator

Notes on Natural Enemies

Top of pageSchwenke (1974) reported the tachinid Pandelleia otiorhynchi from O. sulcatus.

In western France, three species of the nematode order Rhabditida, one species of bacterium (Bacillus cereus) and five species of Deuteromycete (Metarhizium flavoviride, M. anisopliae, Paecilomyces fumosoroseus, Beauveria bassiana and B. brongniartii) were isolated from O. sulcatus. M. anisopliae caused the highest rate of mortality (28%) by natural infection (Marchal, 1977).

In the Netherlands, comparative studies of O. sulcatus and its predators in abandoned strawberry fields and in fields treated with insecticides indicated that carabid adults and larvae (notably those of Bembidion ustulatum which fed on eggs) were active predators, but were unable to exert effective control in treated fields (Evenhuis, 1982).

B. bassiana was isolated from the adults of O. sulcatus in Japan (Saito and Ikeda, 1983).

Impact

Top of pageO. sulcatus continues to be a serious pest of Taxus and hemlock trees (Tsuga), especially in nurseries in Connecticut, USA, and also attacks rhododendrons (Schread, 1966).

Serious damage to Sansevieria trifasciata by O. sulcatus occurred in a horticultural nursery in Berlin, Germany, in 1967. Larval damage to the roots did not at first result in the visible withering of the leaves noted on less sturdy plants, but it was severe. The adults caused serious damage to the leaves, especially of the rosette-forming variety, causing heavy losses (Skadow and Karl, 1967).

O. sulcatus caused injury to Concord grapes in south-central Washington, USA, by feeding on the berry pedicels and cluster stems. Injury resulted in reduced berry weight and loss of berries or portions of the cluster. Weekly counts on 20 tagged clusters provided estimates of loss (in tons/acre) for grapes grown in different cover-crop conditions; they were 3.36 for no cover crop, 3.45 for oats and vetch, 2.42 for lucerne, 3.08 for creeping red fescue (Festuca rubra), and 3.29 for F. rubra in combination with oats and vetch (Cone, 1963).

In tests in 1964-67, adults and eggs of O. sulcatus, a pest of Concord grapes in central Washington, USA, were placed in screened cages containing single Concord vines. It was found that 11 adults per cage resulted in complete defoliation and nearly complete fruit loss in the first season. The threshold of economic loss was 1-3 adults per plant per season. An index was developed for estimating root injury caused by larval feeding. The larvae fed first on the phloem tissue, girdling the roots, but the xylem was left intact, except in cases of severe injury. Vigour and fruit yield over a 3-year period were not significantly affected by root injury (Cone, 1968).

According to Morris (1997), O. sulcatus is very highly polyphagous and a pest of house plants, garden, greenhouse and orchard crops, as well as vines (in continental Europe).

O. sulcatus caused severe damage to blackcurrant and strawberry at Lincoln College, New Zealand, in 1974. Pruning of the roots of blackcurrant by the larvae significantly reduced cane growth, but had no significant effect on cane initiation. Strawberry plants in an infested bed were separable by visual assessment of leaf area as suffering no damage, moderate damage, severe damage or as dead, for which the numbers of larvae averaged 1.95, 8.35, 37.70 and 39.65/plant, respectively. For the first three classes of damage, there were significant correlations among the various plant factors examined, including leaf area, number of leaves and number of developing berries. Only within the moderate-damage class were there significant correlations between the numbers of weevils and the plant factors. In strawberries, economic loss will occur when there are 2-8 larvae/plant (Penman and Scott, 1976).

O. sulcatus is an important horticultural pest in the Netherlands, especially in connection with arboriculture at Boscop, greenhouse crops at Aalsmeer and strawberry in North Brabant (Evenhuis, 1978).

O. sulcatus is one of the most ubiquitous and damaging species in the genus. Larvae of these flightless, parthenogenetic species destroy roots; adults may cause unacceptable defoliation during 4 weeks of maturation feeding and a 3-month oviposition period. O. sulcatus is generally distributed in much of Europe and North America and in parts of Australia, New Zealand and Japan where it is an occasional pest of conifers in nursery production (Glover, 1989).

In Pistoia, Italy, economic damage was caused to Camellia japonica, Prunus laurocerasus, Azalea, Rhododendron and Taxus spp. by O. sulcatus (Bene and Parrini, 1986).

O. sulcatus, together with other congeneric species, frequently causes serious problems in ornamental plant nurseries in central-northern Italy where it attacks various plants including Rhododendron, Cotoneaster, Prunus laurocerasus and Cryptomeria (Fregonese and Zandigiacomo, 1992).

Since the turn of the century, increasing horticultural intensification and the adoption of husbandry techniques favourable to O. sulcatus, such as the use of polythene mulches, increased its pest status. Infestations are most common in Europe (where it originated) and the USA. Nearly 150 plant species have been identified as potential hosts of O. sulcatus. The root-feeding larval stage is the most damaging. Severe damage by the leaf-feeding adults is less common (Moorhouse et al., 1992).

The results of a survey of 80 tree nursery farmers, conducted in the summer of 1992 in Lower Saxony and Schleswig-Holstein, Germany, confirmed that O. sulcatus is still an important pest infesting many ornamental plants in tree nurseries. Year-round infestation was reported in greenhouse cultures by 10 farmers (von Reibnitz and Backhaus, 1992).

O. sulcatus is an important pest of hops in Idaho, USA. Primary damage occurred as nearly mature larvae girdled small roots and rhizomes during feeding in the spring (Baird et al., 1992).

According to Ochs (1960) three virus diseases are causing increasing damage to grapevines in Europe and elsewhere, referred to as mottling, yellow mosaic and fan leaf disease. In experiments, the first virus was transmitted from diseased to healthy plants by adults and larvae of O. sulcatus.

Detection and Inspection

Top of pageLook at the foliage of plants for signs of adult damage. The adults eat irregularly-shaped notches from the leaf margin. Feeding takes place at night, but the small black weevils may be seen during the daytime in the leaf litter or some other dark place. Dig up wilting plants or tip plants out of pots, to find small, creamy-white, curved, legless larvae with pale-brown heads, feeding at the roots, or burrowing into the corm if this is present.

Prevention and Control

Top of page

Cultural Control

In Washington, USA, it was thought that mowing off strawberry fields after harvest would reduce populations of O. sulcatus. In 1975 and 1976, about 60% of adults died after the foliage was mowed off and removed; there was 0-12% mortality in unmowed plots (Garth and Shanks, 1978).

In the Dordogne, France, suggestions for prevention of O. sulcatus attacks include the use of healthy plants, careful soil preparation and crop rotation (Felici, 1981).

Steinernema carpocapsae was applied to beds of Euonymus fortunei in an urban park in Philadelphia, USA to evaluate its potential for controlling O. sulcatus. Although no significant difference was attributed to nematode treatments, weevil damage in non-irrigated beds was lower than in irrigated beds. Irrigation management may be helpful for controlling this pest (Owen et al., 1991).

Biological Control

The parasitic nematode Heterorhabditis bacteriophora and the fungal pathogens Metarhizium anisopliae and Beauveria bassiana were used in a trial for the control of larvae of O. sulcatus in nursery Rhododendron stock in New Zealand in 1988. Larvae of the pest were added to planter bags containing Rhododendron plants and the control organisms were added 2 weeks later. After 5 weeks, H. bacteriophora, M. anisopliae and B. bassiana had achieved 93, 32 and 39% control, respectively (Barratt et al., 1989a).

Three of five isolates of Heterorhabditis sp. and M. anisopliae controlled larvae of O. sulcatus on Thuja occidentalis in containers in the field in the Netherlands during September-October 1991. In open ground, two of three isolates of Heterorhabditis sp. tested were effective as was M. anisopliae. The efficacy of Heterorhabditis sp. was determined by soil temperature and antagonism in soil (van Tol, 1993).

The virulence of 10 isolates of M. anisopliae against larvae of O. sulcatus was examined in greenhouses on potted Begonia. The most virulent isolate, 275-86, reduced numbers of larvae by 86% compared with control (untreated) larvae (pots treated with 0.05% Triton X-100 only), and two other isolates reduced the larval population by 80%. Three isolates of M. anisopliae were examined further for their persistence in peat compost. All three strains reduced larval numbers on Begonia compared with the controls. The highest levels of control were recorded with strain 100-82 (67-80%), which was significantly more virulent than strain 35-79. Fungal drenches were most effective when they were applied 8 weeks before the application of eggs of O. sulcatus; however, significant levels of control were also recorded with fungal spores which were applied 16 weeks before the eggs. The results demonstrated that M. anisopliae has considerable potential as a biological control agent of O. sulcatus in greenhouses (Moorhouse et al., 1993).

Mortality of O. sulcatus larvae at 10, 15, 20 and 25°C following treatment with 100 million conidia/ml suspensions of six M. anisopliae isolates was temperature-dependent. In all cases, the LT50s (time taken to kill 50% of the test population) were inversely related to temperature, but the nature of this response varied between isolates. Strain 101-82 was the most virulent isolate at 25°C, with an LT50 of 3.7 days, but it was the least virulent isolate at 15°C and it failed to kill any O. sulcatus larvae at 10°C. In contrast, strain 159-83 had the lowest virulence at both 20 and 25°C, whereas it was the most virulent isolate at 10°C with an LT50 of 20 days. The mortality rates followed a similar pattern and were positively related to temperature in all cases with the exception of strain 159-83 at 25°C (Moorhouse et al., 1994).

Three species of nematodes were tested in the field and greenhouse as potential biological control agents against O. sulcatus in British Columbia, Canada. Heterorhabditis heliothidis at doses of from 5000 to 20000 infective stages per 50 ml water reduced the numbers of O. sulcatus on potted strawberry plants in the greenhouse by 83-97%. An outdoor application of H. heliothidis at 500 and 5000 nematodes/litre of soil gave significantly better control of larvae of O. sulcatus on potted lodgepole pine trees (Pinus contorta) than did a diazinon drench (Rutherford et al., 1987).

On strawberries in Massachusetts, USA, the nematodes Steinernema carpocapsae, S. glaseri and Heterorhabditis bacteriophora caused 82-91% mortality, when tested for control of O. sulcatus (Driesche and Hauschild, 1987).

A commercial formulation of the entomophilic nematode H. bacteriophora was tested for the control of O. sulcatus in nursery cyclamen stock in New Zealand during 1990. More than 1400 plants were treated with 80 nematodes/cm² using syringes. The number of infested pots was reduced from 27 to 3.8% following treatment and the number of weevils was reduced by 73% (Garnham and McNab, 1990).

The ability of Steinernema feltiae, S. rara and Steinernema sp. strain Tlein, Steinernema sp. strain Pac and Steinernema sp. strain Cuban to control larvae of O. sulcatus was studied in the laboratory and in the field in the Czech Republic. Of the five strains tested in the laboratory, S. feltiae strain Hyl gave the best results, providing 100% elimination of larvae on azaleas [Rhododendron sp.]. Three releases of this nematode (300,000 infectives/plant) were performed in three beds of Rhododendron during 1989-90, resulting in 72-88% protection of plants in beds and 52-77% protection in adjacent plots. Only 30% of plants survived in untreated plots (Mracek et al., 1993).

H. bacteriophora has an active foraging strategy and occurs deep in the soil profile. It was effective against larvae of O. sulcatus, which occurs near roots. Soil temperature influenced the results. At 22°C, the nematode killed O. sulcatus within 1 week. At 16°C, H. bacteriophora was not effective against larvae of O. sulcatus 2 weeks after treatment (Kaya et al., 1993).

Experiments were carried out in containerized woody ornamentals (Taxus baccata and Rhododendron spp.) and in open field stands of strawberries in Germany to test entomopathogenic nematodes (Heterorhabditis sp.) as biological control agents against larvae of O. sulcatus. The following results were obtained: larvae, pupae and young adults were parasitized by Heterorhabditis. At soil temperatures above 12°C decreases in host densities of 81-100% were found, as well in containerized ornamentals as in field production of strawberries. Dosage levels could be reduced to 10,000 nematodes per 2 litre-container or 600,000 nematodes per m² without significant loss of efficiency. It is recommended that Heterorhabditis should be applied as soon as they are delivered, as cool storage for several weeks drastically reduced their efficiency (Backhaus, 1994).

A large number of isolates of entomophilic nematodes were evaluated for their efficacy against O. sulcatus in strawberries at 9, 12 and 20°C. No marked differences were found between Heterorhabditis spp. and Steinernema spp. at 20°C, but the isolates responded differently to low temperatures. Three isolates (HFsel, HUk 211 and S. kraussei Mr) gave almost 50% control at 9°C and, in addition to K122 and HB1'87, these isolates also performed well at 12°C (Westerman and Zeeland, 1994).

In laboratory studies, the effect of a range of temperatures (5-30°C) on the infectivity of Heterorhabditis sp. and Steinernema carpocapsae against O. sulcatus was tested. An increase in temperature resulted in an increase in infectivity of both nematodes. A 100% mortality of O. sulcatus was obtained when Heterorhabditis sp. was kept at 20°C for 12 days. A maximum mortality of 65% was obtained with S. carpocapsae at 20 and 25°C (Miduturi et al., 1994).

In contrast to the traditional production method for heterorhabditid nematodes, lower production costs and prices, and higher quality standards are expected by a new, innovative technology for producing nematodes, developed by the Institute for Phytopathology of the University of Kiel, Germany (von Reibnitz and Backhaus, 1994).

The temperature profile relating to the efficacy of the UK isolate of S. carpocapsae against O. sulcatus on strawberry was clearly delineated between 15 and 33°C. The nematode can be delivered through a drip irrigation system without loss of viability, and the distribution of the nematodes through two T-tapes along and across the raised beds was very satisfactory. Nematodes can be applied either during the late summer or early autumn or in the late spring when temperatures are high enough to give satisfactory control (Kakouli et al., 1994).

Temperature profiles were obtained for two isolates of S. carpocapsae (ALL and UK) and two isolates of Heterorhabditis (Nemasys-H and Fightagrub) against late-instar larvae of O. sulcatus. Efficacy was clearly delineated for each isolate as: S. carpocapsae 14-33°C; Nemasys-H 14-28°C; and Fightagrub 14-33°C (Schirocki and Hague, 1994a).

The efficacy of two isolates of S. carpocapsae (All Biosys 25 and UK Biosys 252) and two isolates of Heterorhabditis (UK isolate Nemasys H and UK isolate Fightagrub) was investigated against O. sulcatus at a range of temperatures, on a temperature gradient plate. The temperature profiles for both Steinernema isolates were similar (15-32°C), but the Heterorhabditis isolates were dissimilar: Nemasys H was more effective at 13-28°C, while Fightagrub infected O. sulcatus larvae up to 35°C (Schirocki and Hague, 1994b).

In greenhouse trials there was 70-95 and 35-50% control of O. sulcatus with 1000 infective juveniles/250 ml pot of Heterorhabditis sp. (HF85) and S. carpocapsae (S25), respectively, in 10-20 days. The doses of S. carpocapsae had a significant effect, whereas contact days were significant for HF85, a cold active strain, gave 99% control of O. sulcatus while S. carpocapsae gave only 56% control. In field experiments, 10,000 infective juveniles/plant of S. carpocapsae and Heterorhabditis sp. gave 10-20 and 10-40% control of O. sulcatus, respectively (Miduturi et al., 1994).

A study in Switzerland, showed that late instar (L 4-6) O. sulcatus can encapsulate and melanize invasive juveniles (IJ's) of Steinernema feltiae and S. kraussei that enter their digestive tracts. Dissection of O. sulcatus larvae, exposed at 9°C to nematode isolates found in the Swiss Alps, revealed up to nine melanized IJ's in the mid-gut region. Encapsulation of IJ's occurred exclusively in insect larvae so that they died from the nematode treatment. The observed immune response in O. sulcatus larvae is therefore unimportant for the infectivity of S. kraussei and S. feltiae at 9°C (Steiner, 1996a).

The efficacy of Heterorhabditis marelatus, was compared with that of H. bacteriophora against O. sulcatus in strawberry in Oregon, USA. In the laboratory, H. marelatus was significantly more virulent than H. bacteriophora on O. sulcatus 7 days after nematode application at 14°C. In field experiments in Oregon, H. marelatus applied at concentrations of 52 and 136 infective juveniles (IJs)/cm² reduced numbers of root weevil larvae and pupae by 75.3 and 77.4%, respectively, 20 days after nematode application. H. bacteriophora applied at concentrations of 128 and 379 IJs/cm² reduced numbers of root weevils by 50.0 and 74.0%, respectively. Both nematode species were detected up to 30 days after application by baiting with Galleria mellonella larvae in soil samples collected from the field (Berry et al., 1997).

Host-Plant Resistance

Of eight varieties of raspberry assessed for five characters, Glen Clova was the most resistant to O. sulcatus (Anon., 1975).

When O. sulcatus adults were fed on eight strawberry genotypes, the lowest number of fertile eggs were produced after feeding on Totem. Among eight red raspberry cultivars, the longest preoviposition periods were after feeding on Leo and Glen Prosen. Loganberry and the Rubus idaeus ss. strigosus selection Kilburne gave similar preoviposition periods to these cultivars. Since both Leo and Glen Prosen are R. occidentalis derivatives, it is suggested that this species might be of value in breeding for resistance to O. sulcatus (Cram and Daubeny, 1982).

Several clones of the wild beach strawberry (Fragaria chiloensis) were compared with clones of commercial strawberries (F. x ananassa)(both species are octoploid), for resistance to feeding by adults of O. sulcatus. Weevils fed less and had lower fecundity on F. chiloensis leaves than on F. x ananassa leaves. The F. chiloensis clones CL-5 and GCL-8 also increased the preoviposition period of newly emerged adults. Egg production correlated closely with the amount of feeding on a clone (Shanks et al., 1984).

The influence of leaf pubescence on the resistance of 25 clones of beach strawberry to O. sulcatus was investigated in no-choice tests under greenhouse conditions. Adults of the weevil fed significantly more on some clones than on others. Fecundity was correlated with feeding. The density of simple hairs on the abaxial leaf surface varied significantly between clones, and hair density was negatively correlated with feeding by the beetle. The results suggest that leaf pubescence plays a role in the resistance of certain beach strawberry clones to feeding by O. sulcatus adults (Doss and Shanks, 1988).

Doss et al. (1991) were the first to show that selection for black vine weevil resistance among Fragaria chiloensis x F. ananassa crosses is possible.

Larvae of O. sulcatus were reared at three densities (0, 2 or 8) on plants of Taraxacum officinale with and without infection by the mycorrhizal fungus, Glomus mosseae. On plants without the fungus, 84% of larvae developed to the last instar, however, only 43% reached the last instar on infected plants. The differential survival of larvae was evident in their effects on plant biomass. Significant interactions were found between larval density and infection, indicating that the mycorrhizal presence mitigated the effects of herbivory at low densities of larvae. Infection by G. mosseae thus conferred some degree of resistance in roots to this insect (Gange et al., 1994).

The cowpea trypsin inhibitor gene from cowpea (Vigna unguiculata), which confers resistance to insect pests, has been inserted into strawberry cultivars by Agrobacterium-mediated gene transfer. Greenhouse trials in which transformants were challenged by larvae of O. sulcatus established that this heterologous gene may have value in the soft fruit industry and it is envisaged that plants containing this gene will be resistant to chewing insects (Graham et al., 1996).

Chemical Control

Potted rhododendron plants in a nursery in New Zealand were treated with 1, 2 or 3 spray applications of carbaryl. Treatments were timed to be just after adult O. sulcatus emergence in early summer, with 2 weeks between repeat applications. Adult O. sulcatus survival was significantly reduced by double and triple applications of carbaryl, but larval establishment was not affected (Barratt et al., 1989b).

In pot plants in the UK, Cotoneaster bullatus and Thuja plicata were treated with controlled release chlorpyrifos granules and slow release fonofos and artificially infested with O. sulcatus 4-6, 18 and 30 months after treatment. In additional trials, the effect of peat/grit and peat/bark/grit soils on infestations on C. bullatus, T. plicata and Euonymus alatus and control by chlorpyrifos and fonofos were investigated. Chlorpyrifos in the controlled release formulation gave control of the pest for up to three seasons. Slow-release fonofos gave reliable control for 1 year. Granules were the easiest formulation to apply. In untreated pots, survival of O. sulcatus was greater in soil with bark than in soil without bark (Buxton et al., 1992).

In Friuli, Italy, the best time to apply insecticides such as acephate against the adults was in the 4- to 6-week period between the appearance of adults and the beginning of oviposition (Fregonese and Zandigiacomo, 1992).

The effectiveness of 19 pesticides in the chemical control of O. sulcatus on ornamental crops was evaluated in Poland during 1986-89. Under laboratory conditions the most effective chemical was diazinon mixed with potting medium. The effectiveness of pesticides was reduced in acid soil. The results of investigations on preventive applications of pesticides as a soil treatment showed that all test compounds gave very good control of the pest. In experiments on containerized stock of Taxus, the best results were obtained with diazinon and chlorpyrifos (Bogatko and Labanowski, 1993).

The contact toxicity of the plant-derived isothiocyanates, methyl, propyl, allyl, phenyl, benzyl and 2-phenylethyl isothiocyanates to eggs of O. sulcatus was tested. All isothiocyanates tested were toxic to weevil eggs; however, isothiocyanates containing an aromatic moiety (phenyl, benzyl and 2-phenylethyl) were considerably more toxic than aliphatic (methyl, propyl and allyl) isothiocyanates. Average mortality in acetone-treated controls was <6%. These results suggest that soil amendments of Brassica spp. tissues producing aromatic isothiocyanates may have greater insecticidal potential than those producing aliphatic isothiocyanates (Borek et al., 1995).

In search for alternatives to the now-banned standard aldrin compost incorporation treatment for control of larvae of O. sulcatus on container-grown hardy ornamental nursery stock, a series of 87 tests of insecticides were carried out at four ADAS experimental centres in the UK (Leeds, Reading, Wolverhampton and Wye) from 1986 to 1989. Insecticidally treated plants and untreated controls were artificially infested with eggs at varying intervals before and after treatment, and the survival of the pest was assessed. Of the candidate materials tested, a slow-release granular formulation of chlorpyrifos incorporated into compost gave good control for up to 34 weeks after treatment (the longest period evaluated) and a microencapsulated slow release formulation of fonofos gave good control for up to 2 years (the longest period evaluated). Surface applications of these two organophosphates, though sometimes effective, were unreliable as either preventive or remedial treatments, even for short-term control (Cross et al., 1995).

Three field experiments, conducted at Efford, UK, in 1992, 1994 and 1995, showed that the incorporation of controlled-release chlorpyrifos granules into the compost of the propagation modules of strawberry plants gave significant control of larvae of O. sulcatus. Better control (approximately 90%) was achieved when field planting was in early August so that the root system was small at the time of egg infestation, than following planting in mid-May (approximately 50%) where a much larger root system had grown. Control was as good where the treated modules had a compost volume of 80 ml, as where the volume was 230 ml. Better control occurred when eggs used for artificial infestation were placed close to the crown of the plant than when placed 15 cm away. In a replicated field experiment at Hinton Admiral, Hampshire, UK, in 1994, pre-planting spot, band or whole-bed soil treatment of raised-bed, polythene-mulched plants (planted as bare-root runners) with the chlorpyrifos granules did not reduce the numbers of larvae significantly. In a further field experiment at East Malling, UK, in 1994, treatments of a 15 cm diameter by 15 cm deep cylinder of soil round each plant did not significantly affect larval numbers. A pre-planting spot treatment with imidacloprid granules or a curative drench was not efficacious, though good control was achieved with a standard curative drench of chlorpyrifos. The survival of eggs and young larvae of O. sulcatus was low (<9%), circumstantial evidence pointing to soil type and condition as being important determining factors. Lighter soils with a structure allowing easy movement of larvae appeared to be more favourable for the survival of the pest. Where adults were caged round strawberry plants with the surrounding surface soil replaced by sand in the field, most eggs (>70%) occurred in the top 0-1 cm of sand, 50% being found on or close to the surface (0-0.2 cm depth) in one experiment. Eggs were aggregated weakly round a single non-mulched plant, but there was little evidence of such aggregation round plants grown in polythene-mulched, raised beds. Survival to the semi-mature larval stage from eggs placed on, or 2 cm below the soil surface 15 cm from the crown of the plant was as great as for eggs placed on, or 2 cm below the surface, adjacent to the crown. Larvae migrated towards the crown of the plant during their development (Cross and Burgess, 1997).

Integrated Pest Management

In laboratory and pot experiments, treatments of Heterorhabditis spp. or etrimfos controlled O. sulcatus on azaleas [Rhododendron]. Applied alone, the chemical insecticides gave better control than the nematode. A combined treatment of the nematode with etrimfos gave the best control (97%) observed in the experiments (Heungens and Buysse, 1992).

Only by combining a fresh approach to maintaining growing areas free of adult weevils (using exclusion), by monitoring adult populations (to detect failure in exclusion), and more effective use of insecticides, can O. sulcatus be eliminated from rhododendron nurseries (Cowles, 1995).

Phytosanitary Measures

The need to pay careful attention to the health of material entering the nursery and of nearby shrubby vegetation to prevent a build up of O. sulcatus pest population was stressed by Fregonese and Zandigiacomo (1992).

In line with the law on forests, the production, sale and transportation of non-ornamental trees have been subjected to phytosanitary control in Quebec, Canada, since 1987. To achieve the objectives stipulated by the Law, three types of inspections are to be conducted in tree nurseries (certification, prevention and autumn inspection) to identify insect pests and pathogens. The inspections for 1993 involving 262 million plants produced in 45 nurseries revealed the presence of O. sulcatus and other Otiorhynchus spp. (Lachance, 1993).

References

Top of page

Abbazzi P, Colonnelli E, Masutti L, Osella G, 1995. Coleoptera Polyphaga XVI (Curculionoidea). In: Minelli A, Ruffo S, La Posta S, eds. Checklist delle Specie della Fauna Italiana, 61. Bologna, Italy: Edizioni Calderini, 1-68.

Andersen MN, 1991. Greenhouse weevil (Otiorhynchus sulcatus). Gartneryrket, 81(5):12-13

Anderson DM, 1987. Curculionidae (broad sense) (Curculionoidea). In: Stehr FW, ed. Immature Insects. Dubuque, USA: Kendall/Hunt Publishing Company.

Anon., 1975. Raspberry. Research Branch Report 1974. II. Fruit and Vegetable Crops. Ottawa, Canada: Department of Agriculture.

Anon., 1976. Hawaii pest report - detection. Cooperative Plant Pest Report, 1(33):538.

Anon., 1980. Black vine weevil (Otiorhynchus sulcatus) - Kansas - a new state record. Cooperative Plant Pest Report, 5:35.

Backhaus GF, 1994. Biological control of Otiorhynchus sulcatus F. by use of entomopathogenic nematodes of the genus Heterorhabditis. Acta Horticulturae, No. 364:131-142

Baird CR, Dorschner KW, Nyberg CJ, 1992. Biology of the black vine weevil Otiorhynchus sulcatus on hop in Idaho (Coleoptera: Curculionidae). Journal of the Entomological Society of British Columbia, 89:31-37

Balachowsky AS, 1963. Entomology applied to agriculture. Tome 1. Coleoptera. Second Volume. Paris, France: Masson et Cie, 982-984.

Baraldi D, Baraldi G, 1996. Ornamental frond and foliage plants: agronomic, commercial and phytosanitary aspects. Informatore Fitopatologico, 46(12):17-19.

Baranowski T, Dankowska E, 1996. Pests in horticulture substrates and possibilities of their control. Zaszyty Problemowe Postepow Nauk Rolniczych, 429:43-45.

Barratt BIP, Ferguson CM, Jackson TA, Harvey IC, 1989. Control of black vine weevil (Otiorhynchus sulcatus (F.)) larvae with parasitic nematodes and fungal pathogens. Proceedings of the Forty Second New Zealand Weed and Pest Control Conference, Taranki Country Lodge, New Plymouth, 8-10 August, 1989. Palmerston North, New Zealand: New Zealand Weed and Pest Control Society Inc., 259-261

Barratt BIP, Lauren DR, Snelling CM, Ferguson CM, 1989. Carbaryl for control of black vine weevil (Otiorhynchus sulcatus (F.)) on rhododendrons. Proceedings of the Forty Second New Zealand Weed and Pest Control Conference, Taranki Country Lodge, New Plymouth, 8-10 August, 1989. Palmerston North, New Zealand: New Zealand Weed and Pest Control Society Inc., 262-265

Barrigna-Tuñón JE, 2013. Coleoptera Neotropical. Coleoptera Neotropical. www.coleoptera-neotropical.org

Bene G del, Parrini C, 1986. Notes on the biology of species of Otiorrhynchus (Coleoptera Curculionidae) injurious to ornamental plants in nurseries in Tuscany. Redia, 69:341-359

Berry RE, Liu J, Groth E, 1997. Efficacy and persistence of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) against root weevils (Coleoptera: Curculionidae) in strawberry. Environmental Entomology, 26(2):465-470; 34 ref.

Bluel S, Kaserer H, 1989. Investigations on the control of Otiorrhynchus sulcatus F. on vines and ornamental plants. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Fruchteverwertung, 39(3):124-129

Bogatko W, Labanowski G, 1993. Chemical control of the black vine weevil (Otiorrhynchus sulcatus F.) on ornamental crops. Journal of Fruit and Ornamental Plant Research, 1(3):93-101

Borek V, Elberson LR, McCaffrey JP, Morra MJ, 1995. Toxicity of aliphatic and aromatic isothiocyanates to eggs of the black vine weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 88(5):1192-1196

Bouchard P, Lesage L, Goulet H, Bostanian NJ, Vincent C, Zmudzinska A, Lasnier J, 2005. Weevil (Coleoptera: Curculionoidea) diversity and abundance in two Quebec vineyards. Annals of the Entomological Society of America, 98(4):565-574. http://www.esa.catchword.org

Bousquet Y, 1991. Checklist of beetles of Canada and Alaska. Ottawa, Canada: Research Branch Agriculture Canada Publication.

Buxton JH, Cross JV, Emmett BJ, Saynor M, 1992. Control of vine weevil with controlled release chlorpyrifos granules in containerised nursery stock. Proceedings - Brighton Crop Protection Conference Pests and Diseases - 1992 Brighton, November 23-26, 1992., 1229-1234; 4 ref.

Casteels H, Clercq Rde, Miduturi JS, 1995. Phenological observations on the black vine weevil Otiorhynchus sulcatus F. in Belgium during the decade 1985-1994. Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 60(3a):657-661; 12 ref.

Cone WW, 1963. The black vine weevil, Brachyrhinus sulcatus, as a pest of grapes in south central Washington. Journal of Economic Entomology, 56(5):677-680.

Cone WW, 1968. Black vine weevil larval damage to concord grape roots at different population densities. Journal of Economic Entomology, 61(5):1220-1224.

Coremans-Pelseneer J, Tillemans F, 1991. Saprophytic persistence and reisolates pathogenicity of Beauveria brongniartii (Sacc) Petch. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 56(2a):211-214

Cowles RS, 1995. Black vine weevil biology and management. American Rhododendron Society Journal, 49(2):83-85, 94-97

Cram WT, Daubeny HA, 1982. Responses of black vine weevil adults fed foliage from genotypes of strawberry, red raspberry, and red raspberry-blackberry hybrids. HortScience, 17(5):771-773.

Crook AME, 1996. A monoclonal antibody technique for investigating predation on vine weevil in soft fruit plantations. Brighton Crop Protection Conference: Pests & Diseases - 1996: Volume 1: Proceedings of an International Conference, Brighton, UK, 18-21 November 1996., 435-436; 4 ref.

Cross JV, Burgess CM, 1997. Localised insecticide treatment for the control of vine weevil larvae (Otiorhynchus sulcatus) on field-grown strawberry. Crop Protection, 16(6):565-574; 17 ref.

Cross JV, Buxton JH, Jacobson R, Richardson DM, 1995. Chemical control of vine weevil larvae on container-grown hardy ornamental nursery stock 1986-1989. Annals of Applied Biology, 127(3):533-542; 15 ref.

Curran J, 1992. Influence of application method and pest population size on the field efficacy of entomopathogenic nematodes. Journal of Nematology, 24(4, Supplement):631-636

Decelle J, Voss E, 1972. The Terrestrial Fauna of the Island of St Helena. 2 Insects. part 9, p. 323.

Doss RP, Shanks CH Jr, 1988. The influence of leaf pubescence on the resistance of selected clones of beach strawberry (Fragaria chiloensis (L.) Duchesne) to adult black vine weevils (Otiorhynchus sulcatus F.). Scientia Horticulturae, 34(1-2):47-54

Doss RP, Shanks CH Jr, Sjulin TM, Garth JKL, 1991. Evaluation of some Fragaria chiloensis x (F. x ananassa) seedlings for resistance to black vine weevil. Scientia Horticulturae, 48(3-4):233-239

Driesche RG van, Hauschild K, 1987. Potential for increased use of biological control agents in small fruit crops in Massachusetts. Research Bulletin, Massachusetts Agricultural Experiment Station, No. 718:22-34.

Emden FI van, 1952. On the taxonomy of Rhynchophora larvae: Adelognatha and Alophinae (Insecta: Coleoptera). Proceedings of the Zoological Society of London, 122(3):651-795.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Esbjerg P, 1977. Ear weevils (Otiorrhynchus sulcatus Fabr.). Manedsoversigt over plantesygdomme, 500 (June 1977):56

Evenhuis HH, 1978. Bionomics and control of the black vine weevil Otiorrhynchus sulcatus. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 43:607-611

Evenhuis HH, 1982. Control of the black vine weevil Otiorrhynchus sulcatus (Coleoptera, Curculionidae). Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 47(2):675-678

Felici G, 1981. Weevils on strawberries in the Dordogne. Revue Horticole, 219:57-59.

Fregonese A, Zandigiacomo P, 1992. Otiorhynchus sulcatus (Fabr.), a curculionid beetle damaging ornamental plants in nurseries. Informatore Agrario, 48(35):73-77

Gange AC, Brown VK, Sinclair GS, 1994. Reduction of black vine weevil larval growth by vesicular-arbuscular mycorrhizal infection. Entomologia Experimentalis et Applicata, 70(2):115-119

Garnham M, McNab H, 1990. The use of entomogenous nematodes for the control of black vine weevil in cyclamen. Proceedings of the Forty Third New Zealand Weed and Pest Control Conference. Palmerston North, New Zealand: New Zealand Weed and Pest Control Society Inc., 70-72

Garth GS, Shanks CH Jr, 1978. Some factors affecting infestation of strawberry fields by the black vine weevil in western Washington. Journal of Economic Entomology, 71(3):443-448

Gembauffe N, Coremans-Pelseneer J, Tillemans F, Hemptinne JL, 1990. Otiorhynchus sulcatus F. (Coleoptera, Curculionidae) alimentary choices. First results. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 55(2b):541-544

Gordon SC, Woodford JAT, Grassi A, Zini M, Tuovinen T, Lindqvist I, McNicol JW, 2003. Monitoring and importance of wingless weevils (Otiorhynchus spp.) in European red raspberry production. Bulletin OILB/SROP [Proceedings of the IOBC/WPRS Working Group 'Integrated Plant Protection in Orchards' subgroup 'Soft Fruits', Dundee, Scotland, 18-21 September, 2001.], 26(2):55-60.

Graham J, Gordon SC, Williamson B, 1996. Progress towards the use of transgenic plants as an aid to control soft fruit pests and diseases. In Brighton Crop Protection Conference: Pests and Diseases - 1996: Volume 3; Proceedings of an International Conference, Brighton, UK, 18-21 November 1996. Farnham, UK: British Crop Protection Council, 777-782.

Hanula JL, 1993. Vertical distribution of black vine weevil (Coleoptera: Curculionidae) immatures and infection by entomogenous nematodes in soil columns and field soil. Journal of Economic Entomology, 86(2):340-347

Heungens A, Buysse G, 1992. Control of black vine weevil larvae in azalea culture with heterorhabditid nematodes and the insecticides endosulfan and etrimfos. Parasitica, 48(2):65-72; 15 ref.

Hoffmann A, 1950. Faune de France. C=leoptFres Curculionides, 52 (I T.). Paris, France: Lechevalier.

Ignatov B, Kirkov K, 1972. The grape-vine weevils. Rastitelna Zashchita, 20(1):29-31.

Joy NH, 1932. A Practical Handbook of British Beetles. Volume 1. London, UK: H. F. and G. Witherby.

Kacic S, Vitanovic E, Zanic K, Katalinic M, 2009. Control of the (Otiorhynchus sulcatus F.) weevil in protected cultivation. (Suzbijanje pipe (Otiorhynchus sulcatus F.) u za?ticenom prostoru.) Glasilo Biljne Za?tite, 9(3):153-157. http://www.hdbz.hr

Kakouli T, Schirocki A, Hague NGM, 1994. Factors affecting the control of Otiorhynchus sulcatus with entomopathogenic nematodes, in strawberries grown on raised beds. Proceedings - Brighton Crop Protection Conference, Pests and Diseases, 1994, vol. 2., 945-946; 3 ref.

Kaya HK, Burlando TM, Thurston GS, 1993. Two entomopathogenic nematode species with different search strategies for insect suppression. Environmental Entomology, 22(4):859-864

Kovacevic Z, 1971. Otiorhynchus species in Yugoslavia and their geographic distribution. Zast. Bilja., 1-103.

Lachance C, 1993. A programme for monitoring in nurseries. Insectes et maladies des arbres: Québec 1993., 19-20.

Lee CY, Morimoto K, 1988. larvae of the weevil family Curculionidae of Japan. Part 1. Key to genera and the short-nosed group (Insecta: Coleoptera). Journal of the Faculty of Agriculture, Kyushu University, 33(1-2):109-130

Li SY, Fitzpatrick SM, Henderson DE, 1995. Grooved board traps for monitoring the black vine weevil (Coleoptera: Curculionidae) in raspberry fields. Journal of the Entomological Society of British Columbia, No. 92:97-100; 4 ref.

Lola-Luz T, MacNaidhe F, Dune R, Fitters P, Griffin C, Downes M, 2003. Integrated crop management in strawberries in Ireland: description, progress and future plans. Bulletin OILB/SROP [Proceedings of the IOBC/WPRS Working Group 'Integrated Plant Protection in Orchards' subgroup 'Soft Fruits', Dundee, Scotland, 18-21 September, 2001.], 26(2):19-21.

Lone RS la, Clarke RG, 1981. Larval development of Otiorhynchus sulcatus (Coleoptera: Curculionidae) and effects of larval density on larval mortality and injury to rhododendron. Environmental Entomology, 10(2):190-191

Lozzia GC, 1983. Otiorrhynchus sulcatus in cultivated flowers of the Lake Maggiore region. Informatore Fitopatologico, 33(7/8):15-19

Maier CT, 1981. Reproductive success of the black vine weevil, Otiorhynchus sulcatus (F.), fed different foliar diets and evaluation of techniques for predicting fecundity. Environmental Entomology, 10(6):928-932

Marchal M, 1977. Fungi imperfecti isolated from a natural population of Otiorrhynchus sulcatus Fabr. (Col. Curculionidae). Revue de Zoologie Agricole et de Pathologie Vegetale, 76(4):101-108

Masaki M, Ohmura K, Ichinohe F, 1984. Host range studies of the black vine weevil Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae). Applied Entomology and Zoology, 19(1):95-106

Masaki M, Ohto K, 1995. Effects of temperature on development of the black vine weevil, Otiorhynchus sulcatus (F.)(Coleoptera: Curculionidae). Research Bulletin of the Plant Protection Service, 31:37-45.

May BM, 1994. An introduction to the immature stages of Australian Curculionoidea. In: Zimmerman EC, ed. Australian Weevils. Volume 2. Melbourne, Australia: CSIRO, 365-728.

Miduturi JS, Clercq R de, Casteels H, Grisse Ade, 1994. Effect of temperature on the infectivity of entomopathogenic nematodes against black vine weevil (Otiorrhynchus sulcatus F.). Parasitica, 50(3/4):103-108

Miduturi JS, Clercq R de, Grisse Ade, 1994. Greenhouse and field control of black vine weevil, Otiorhynchus sulcatus F., with Steinernema carpocapsae and Heterorhabditis sp. Genetics of entomopathogenic nematode - bacterium complexes. Proceedings and National Reports 1990-1993, St. Patrick's College, Maynooth, Co. Kildare, Ireland, No. EUR 15681 EN:221

Moorhouse ER, Charnley AK, Gillespie AT, 1992. A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Annals of Applied Biology, 121(2):431-454

Moorhouse ER, Fenlon JS, Gillespie AT, Charnley AK, 1992. Observations on the development, oviposition and fecundity of vine weevil adults, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae). Entomologist's Gazette, 43(3):207-218

Moorhouse ER, Gillespie AT, Charnley AK, 1993. Selection of virulent and persistent Metarhizium anisopliae isolates to control black vine weevil (Otiorhynchus sulcatus) larvae on glasshouse Begonia. Journal of Invertebrate Pathology, 62(1):47

Moorhouse ER, Gillespie AT, Charnley AK, 1994. The influence of temperatures on the susceptibility of vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), larvae to Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Annals of Applied Biology, 124(2):185-193

Morris MG, 1997. Broad-nosed weevils. Coleoptera: Curculionidae (Entiminae). Handbooks for the Identification of British Insects Vol. 5, Part 17a. London, UK: Royal Entomological Society.

Mracek Z, Jiskra K, Kahounova L, 1993. Efficiency of steinernematid nematodes (Nematoda: Steinernematidae) in controlling larvae of the black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) in laboratory and field experiments. European Journal of Entomology, 90(1):71-76

Mulgrew SM, 1990. Integrated pest management research and implementation in Massachusetts. Combined Proceedings - International Plant Propagators' Society, 40:536-542

Nielsen DG, 1989. Minimizing Otiorhynchus root weevil impact in conifer nurseries. Insects affecting reforestation: biology and damage [edited by Alfaro, R. I.; Glover, S. G.] Victoria, Canada; Forestry Canada, Pacific and Yukon Region, 71-79

Nielsen DG, Roth JR, 1985. Influence of potting media on toxicity of bendiocarb and carbofuran to first-instar black vine weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 78(4):742-747

O'Brien CW, Wibmer GJ, 1982. Annotated checklist of the weevils (Curculionidae sensu lato) of North America, Central America and the West Indies (Coleoptera: Curculionoidea). Memoirs, American Entomological Institute, 34:1-382.

Ochs G, 1960. Tests on the transmission of three viruses of vines by mites and insects. Zeitschrift für Angewandte Zoologie, 47(4):485-491.

Owen NP, Raupp MJ, Sadoff CS, Bull BC, 1991. Influence of entomophagous nematodes and irrigation on black vine weevil in Euonymus fortunei (Turcz.) Hard. Mazz. beds. Journal of Environmental Horticulture, 9(3):109-112

Penman DR, Scott RR, 1976. Impact of black vine weevil, Otiorhynchus sulcatus (F.), on blackcurrants and strawberries in Canterbury. New Zealand Journal of Experimental Agriculture, 4(4):381-384

Phillips PA, 1989. Simple monitoring of black vine weevil in vineyards. California Agriculture, 43(3):12-13

Pommier J-J, 1986. The vine weevil in Perigord strawberry plantations. P.H.M. - Revue Horticole, No. 265:29-33

Prado CE, 1988. Notes on some insects of agricultural importance in Chile. Agricultura Tecnica, 48(1):51-54

Reibnitz C von, Backhaus GF, 1992. Analysis of the incidence and control of Otiorhynchus sulcatus in tree nurseries. Results from a survey in Lower Saxony and Schleswig-Holstein. Gesunde Pflanzen, 45(2):54-60

Reibnitz C von, Backhaus GF, 1994. Investigations on demand for biological control of Otiorhynchus spp. and cost structure of production methods for entomopathogenic nematodes (Heterorhabditis). Gartenbauwissenschaft, 59(5):199-206

Rutherford TA, Trotter D, Webster JM, 1987. The potential of heterorhabditid nematodes as control agents of root weevils. Canadian Entomologist, 119(1):67-73

Saito T, Ikeda F, 1983. Beauveria bassiana (Bals.) Vuill. isolated from the black vine weevil, Otiorhynchus sulcatus Fabr. (Coleoptera: Curculionidae). Japanese Journal of Applied Entomology and Zoology, 27(4):307-308

Saliba LJ, 1963. Insect pests of crop plants in the Maltese islands. Malta: Malta Department of Information, 13.

Scherf H, 1964. The developmental stages of Central European Curculionidae (Morphology, Bionomics, Ecology). Abhandlungen hrsg. von der Senckenbergischen Naturforschenden Gesellschaft, 506:1-335.

Schirocki A, Hague NGM, 1994. The effect of temperature on the susceptibility of the black vine weevil, Otiorhynchus sulcatus to different isolates of Steinernema and Heterorhabditis. Bulletin OILB/SROP, 17(3):61-64; 6 ref.

Schirocki A, Hague NGM, 1994. The effect of temperature on the susceptibility of the black vine weevil, Otiorhynchus sulcatus, to different isolates of Steinernema and Heterorhabditis. Genetics of entomopathogenic nematode - bacterium complexes. Proceedings and National Reports 1990-1993, St. Patrick's College, Maynooth, Co. Kildare, Ireland, No. EUR 15681 EN:222

Schread JC, 1972. The black vine weevil. Circular, Connecticut Agricultural Experiment Station, No. 211 (revd.):8 pp.

Schwenke W, ed., 1974. The forest pests of Europe. A handbook in five volumes. Volume 2. Beetles. Hamburg, Germany: Paul Parey, 500 pp.

Seymour PR, Roberts H, Davis ME (Compilers), 1985. Insects and other invertebrates found in plant material imported into England and Wales, 1984. Reference Book, Ministry of Agriculture, Fisheries and Food, UK, 442/84.

Shanks CH Jr, 1991. Root weevils of berry crops. Extension Bulletin - Cooperative Extension, College of Agriculture & Home Economics, Washington State University, No. EB0965:3 pp.

Shanks CH Jr, Chase DL, Chamberlain JD, 1984. Resistance of clones of wild strawberry, Fragaria chiloensis, to adult Otiorhynchus sulcatus and O. ovatus (Coleoptera: Curculionidae). Environmental Entomology, 13(4):1042-1045

Shtakel'berg AA, 1949. Noxious Animals of Central Asia. Moscow Akad. Nauk SSSR.

Silfverberg H, 1992. Enumeration of the Coleoptera of Fennoscandinavia, Denmark and the Baltic. Helsinki, Finland: Helsingfors.

Skadow K, Karl E, 1967. Injurious occurrence of O. sulcatus on Sansevieria. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, Berlin, (N.F.) 21(11):213-214.

Smith DC, Raupp MJ, 1986. Economic and environmental assessment of an integrated pest management program for community-owned landscape plants. Journal of Economic Entomology, 79(1):162-165

Steiner WA, 1996. Dispersal and host-finding ability of entomopathogenic nematodes at low temperatures. Nematologica, 42(2):243-261; 27 ref.

Steiner WA, 1996. Melanization of Steinernema feltiae Filipjev and S. kraussei Steiner in larvae of Otiorhynchus sulcatus (F.). Fundamental and Applied Nematology, 19(1):67-70; 11 ref.

Stenseth C, 1979. Root weevils on strawberry. Gartneryrket, 69(9):231-233

Stenseth C, Vik J, 1979. The effect of black polythene mulch on the development of Otiorrhynchus sulcatus on strawberry plants. Gartneryrket, 69(912/914):7 pp.

Tol RWHM van, 1993. Control of the black vine weevil (Otiorhynchus sulcatus) with different isolates of Heterorhabditis sp. and Metarhizium anisopliae in nursery stock. Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society, 4:181-186

Tusnadi CK, Merkl L, 1985. Recent damage by Otiorrhynchus sulcatus F. in Hungary. Novenyvedelem, 21(8):369-370

Westerman PR, Zeeland MG van, 1989. Comparison of Heterorhabditis isolates for control of Otiorhynchus sulcatus at low temperatures. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 54(3b):1115-1123

Westerman PR, Zeeland MG van, 1994. Infectivity and pathogenicity of the insect parasitic nematodes Heterorhabditis spp. and Steinernema spp. for Otiorhynchus sulcatus at different temperatures. Bulletin OILB/SROP, 17(3):65-69

Wibmer GJ, O'Brien CW, 1986. Annotated checklist of the weevils (Curculionidae sensu lato) of South America (Coleoptera: Curculionoidea). Memoirs of the American Entomological Institute, 39:1-563.

Zepp DB, Dierks AZ, Sanders DJ, 1979. Effects of diflubenzuron on black vine weevil oviposition, egg viability and adult longevity (Coleoptera: Curculionidae). Journal of the Kansas Entomological Society, 52(4):662-666

Zervos S, Eidt DC, Weaver CAA, Tosh KJ, 1994. Control of black vine weevil in forest nurseries with entomopathogenic nematodes. Technical Note - Maritimes Region, Canadian Forest Service, No. 289:6 pp.

Distribution Maps

Top of page
Distribution map Austria: Widespread
Bluel & Kaserer, 1989; EPPO, 2014Australia: Restricted distribution
EPPO, 2014Australia
See regional map for distribution within the countryBelgium: Widespread
Coremans-Pelseneer & Tillemans, 1991; Casteels et al., 1995; EPPO, 2014Bulgaria: Present
Ignatov & Kirkov, 1972Canada: Restricted distribution
EPPO, 2014Canada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countrySwitzerland: Widespread
Steiner ,1996a; Steiner ,1996b; EPPO, 2014Chile: Widespread
Prado, 1988; Wibmer & O'Brien, 1986; EPPO, 2014Czechoslovakia (former): WidespreadCzech Republic: Present
Mracek et al., 1993; EPPO, 2014Germany: Widespread
von & Reibnitz Backhaus, 1994; Skadow & Karl, 1967; EPPO, 2014Denmark: Widespread
Stenseth, 1979; Silfverberg, 1992; EPPO, 2014Estonia: Present
Silfverberg, 1992Egypt: Widespread
Seymour et al., 1985; EPPO, 2014Spain: Widespread
EPPO, 2014Spain: Widespread
EPPO, 2014Finland: Widespread
Silfverberg, 1992; EPPO, 2014France: Widespread
Pommier, 1986; Hoffmann, 1950; EPPO, 2014UK: Widespread
Cross et al., 1995; Crook, 1996; Cross & Burgess, 1997; Graham et al., 1996; EPPO, 2014UK
See regional map for distribution within the countryCroatia: Present
Kacic et al., 2009Hungary: Widespread
Tusnadi & Merkl, 1985; EPPO, 2014Ireland: Widespread
Schirocki & Hague ,1994b; Lola-Luz et al., 2003; EPPO, 2014Italy: Widespread
del & Bene Parrini, 1986; Baraldi & Baraldi, 1996; Abbazzi et al., 1995; EPPO, 2014Japan: Widespread
Masaki et al., 1984; EPPO, 2014Japan
See regional map for distribution within the countryMalta: Widespread
Saliba, 1963; EPPO, 2014Malta: Widespread
Saliba, 1963; EPPO, 2014Malaysia
See regional map for distribution within the countryNetherlands: Widespread
Westerman & van Zeeland, 1989; van Tol, 1993; EPPO, 2014Norway: Widespread
Andersen, 1991; Silfverberg, 1992; EPPO, 2014New Zealand: Widespread
Barratt et al. ,1989a; Garnham & McNab, 1990; EPPO, 2014Poland: Widespread
Baranowski & Dankowska, 1996; EPPO, 2014Portugal: Present
EPPO, 2014Portugal
See regional map for distribution within the countryPortugal
See regional map for distribution within the countryPortugal
See regional map for distribution within the countrySerbia: Restricted distribution
EPPO, 2014Russian Federation: Restricted distribution
EPPO, 2014Russian Federation: Restricted distribution
EPPO, 2014Russian Federation
See regional map for distribution within the countrySweden: Widespread
Stenseth & Vik, 1979; Silfverberg, 1992; EPPO, 2014Saint Helena: Widespread
Decelle & Voss, 1972; EPPO, 2014Slovakia: Present
EPPO, 2014USA: Widespread
EPPO, 2014USA: Widespread
EPPO, 2014USA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryYugoslavia (Serbia and Montenegro): Restricted distribution
Kovacevic, 1971
  • = Present, no further details
  • = Evidence of pathogen
  • = Widespread
  • = Last reported
  • = Localised
  • = Presence unconfirmed
  • = Confined and subject to quarantine
  • = See regional map for distribution within the country
  • = Occasional or few reports
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Distribution map (asia) Japan: Widespread
Masaki et al., 1984; EPPO, 2014Honshu: Present
Masaki & Ohto, 1995Peninsular Malaysia: PresentRussian Federation: Restricted distribution
EPPO, 2014
Distribution map (europe) Austria: Widespread
Bluel & Kaserer, 1989; EPPO, 2014Belgium: Widespread
Coremans-Pelseneer & Tillemans, 1991; Casteels et al., 1995; EPPO, 2014Bulgaria: Present
Ignatov & Kirkov, 1972Switzerland: Widespread
Steiner ,1996a; Steiner ,1996b; EPPO, 2014Czechoslovakia (former): WidespreadCzech Republic: Present
Mracek et al., 1993; EPPO, 2014Germany: Widespread
von & Reibnitz Backhaus, 1994; Skadow & Karl, 1967; EPPO, 2014Denmark: Widespread
Stenseth, 1979; Silfverberg, 1992; EPPO, 2014Estonia: Present
Silfverberg, 1992Spain: Widespread
EPPO, 2014Finland: Widespread
Silfverberg, 1992; EPPO, 2014France: Widespread
Pommier, 1986; Hoffmann, 1950; EPPO, 2014UK: Widespread
Cross et al., 1995; Crook, 1996; Cross & Burgess, 1997; Graham et al., 1996; EPPO, 2014Scotland: Present
Gordon et al., 2003Croatia: Present
Kacic et al., 2009Hungary: Widespread
Tusnadi & Merkl, 1985; EPPO, 2014Ireland: Widespread
Schirocki & Hague ,1994b; Lola-Luz et al., 2003; EPPO, 2014Italy: Widespread
del & Bene Parrini, 1986; Baraldi & Baraldi, 1996; Abbazzi et al., 1995; EPPO, 2014Malta: Widespread
Saliba, 1963; EPPO, 2014Netherlands: Widespread
Westerman & van Zeeland, 1989; van Tol, 1993; EPPO, 2014Norway: Widespread
Andersen, 1991; Silfverberg, 1992; EPPO, 2014Poland: Widespread
Baranowski & Dankowska, 1996; EPPO, 2014Portugal: Present
EPPO, 2014Azores: Present
Morris, 1997Madeira: Present
EPPO, 2014Serbia: Restricted distribution
EPPO, 2014Russian Federation: Restricted distribution
EPPO, 2014Russia (Europe): Present
Shtakel'berg, 1949; EPPO, 2014Sweden: Widespread
Stenseth & Vik, 1979; Silfverberg, 1992; EPPO, 2014Slovakia: Present
EPPO, 2014Yugoslavia (Serbia and Montenegro): Restricted distribution
Kovacevic, 1971
Distribution map (africa) Egypt: Widespread
Seymour et al., 1985; EPPO, 2014Spain: Widespread
EPPO, 2014Malta: Widespread
Saliba, 1963; EPPO, 2014Madeira: Present
EPPO, 2014Saint Helena: Widespread
Decelle & Voss, 1972; EPPO, 2014
Distribution map (north america) Canada: Restricted distribution
EPPO, 2014British Columbia: Present
Rutherford et al., 1987; Li et al., 1995; O'Brien & Wibmer, 1982; EPPO, 2014Manitoba: Present
Bousquet, 1991New Brunswick: Present
Zervos et al., 1994; O'Brien & Wibmer, 1982; EPPO, 2014Newfoundland and Labrador: Present
O'Brien & Wibmer, 1982; EPPO, 2014Nova Scotia: Present
O'Brien & Wibmer, 1982; EPPO, 2014Ontario: Present
Bousquet, 1991; EPPO, 2014Prince Edward Island: Present
Bousquet, 1991; EPPO, 2014Quebec: Present
Lachance, 1993; O'Brien & Wibmer, 1982; EPPO, 2014USA: Widespread
EPPO, 2014Alaska: Present
Bousquet, 1991; EPPO, 2014Arkansas: Present
O'Brien & Wibmer, 1982Arizona: Present
O'Brien & Wibmer, 1982; EPPO, 2014California: Present
Phillips, 1989; O'Brien & Wibmer, 1982; EPPO, 2014Connecticut: Present
Schread, 1972; Hanula, 1993; O'Brien & Wibmer, 1982; EPPO, 2014District of Columbia: Present
EPPO, 2014Hawaii: Present
Anon, 1976; EPPO, 2014Idaho: Present
Baird et al., 1992; O'Brien & Wibmer, 1982; EPPO, 2014Illinois: Present
O'Brien & Wibmer, 1982; EPPO, 2014Kansas: Present
Anon, 1980; EPPO, 2014Massachusetts: Present
Mulgrew, 1990; O'Brien & Wibmer, 1982; EPPO, 2014Maryland: Present
Smith & Raupp, 1986; O'Brien & Wibmer, 1982; EPPO, 2014Maine: Present
O'Brien & Wibmer, 1982; EPPO, 2014Michigan: Present
O'Brien & Wibmer, 1982; EPPO, 2014Missouri: Present
EPPO, 2014Montana: Present
O'Brien & Wibmer, 1982; EPPO, 2014North Carolina: Present
O'Brien & Wibmer, 1982; EPPO, 2014New Hampshire: Present
O'Brien & Wibmer, 1982; EPPO, 2014New Jersey: Present
O'Brien & Wibmer, 1982; EPPO, 2014New Mexico: Present
O'Brien & Wibmer, 1982; EPPO, 2014Nevada: Present
O'Brien & Wibmer, 1982; EPPO, 2014New York: Present
Zepp et al., 1979; O'Brien & Wibmer, 1982; EPPO, 2014Ohio: Present
Nielsen & Roth, 1985; O'Brien & Wibmer, 1982; EPPO, 2014Oregon: Present
la & Lone Clarke, 1981; Berry et al., 1997; O'Brien & Wibmer, 1982; EPPO, 2014Pennsylvania: Present
Owen et al., 1991; O'Brien & Wibmer, 1982; EPPO, 2014Rhode Island: Present
O'Brien & Wibmer, 1982; EPPO, 2014South Dakota: Present
O'Brien & Wibmer, 1982; EPPO, 2014Texas: Present
O'Brien & Wibmer, 1982Utah: Present
O'Brien & Wibmer, 1982; EPPO, 2014Virginia: Present
O'Brien & Wibmer, 1982; EPPO, 2014Vermont: Present
O'Brien & Wibmer, 1982; EPPO, 2014Washington: Present
Cone, 1963; Cone, 1968; Shanks, 1991; O'Brien & Wibmer, 1982; EPPO, 2014Wisconsin: Present
O'Brien & Wibmer, 1982; EPPO, 2014
Distribution map (central america) USA: Widespread
EPPO, 2014
Distribution map (south america) Chile: Widespread
Prado, 1988; Wibmer & O'Brien, 1986; EPPO, 2014
Distribution map (pacific) Australia: Restricted distribution
EPPO, 2014Tasmania: Present
Curran, 1992; EPPO, 2014New Zealand: Widespread
Barratt et al. ,1989a; Garnham & McNab, 1990; EPPO, 2014