Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

Continuing to use www.cabi.org/isc means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Datasheet

Aceria guerreronis

Summary

  • Last modified
  • 09 April 2014
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Aceria guerreronis
  • Preferred Common Name
  • coconut mite
  • Taxonomic Tree
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Chelicerata
  •                 Class: Arachnida
  • Summary of Invasiveness
  • The coconut mite, Aceria guerreronis, is considered the most important pest of coconuts in the Americas, Africa and most recently in South-East Asia. Although its exact origin is debatable it is likely to be native to South America and introduced ...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Green nuts damaged by A. guerreronis
TitleGreen nuts damaged by A. guerreronis
Caption
CopyrightDave Moore/CABI BioScience
Green nuts damaged by A. guerreronis
Green nuts damaged by A. guerreronisDave Moore/CABI BioScience

Identity

Top of page

Preferred Scientific Name

  • Aceria guerreronis Keifer

Preferred Common Name

  • coconut mite

Other Scientific Names

  • Eriophyes guerreronis Keifer

International Common Names

  • Spanish: acaro del cocotero
  • French: acarien du cocotier, ravageur du cocotier (dahomey)
  • Portuguese: acaro da necrose do olho do coqueiro

Local Common Names

  • Germany: Milbe, Kokosblueten-

EPPO code

  • ACEIGU (Aceria guerreronis)

Summary of Invasiveness

Top of page

The coconut mite, Aceria guerreronis, is considered the most important pest of coconuts in the Americas, Africa and most recently in South-East Asia. Although its exact origin is debatable it is likely to be native to South America and introduced to Africa and Asia, where it is an invasive species (Navia et al., 2005).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Chelicerata
  •                 Class: Arachnida
  •                     Subclass: Acari
  •                         Superorder: Acariformes
  •                             Suborder: Prostigmata
  •                                 Family: Eriophyidae
  •                                     Genus: Aceria
  •                                         Species: Aceria guerreronis

Description

Top of page

Keifer (1965) first described A. guerreronis. The adult female coconut mite is vermiform, 36-52 µm wide and 205-255 µm long with two pairs of legs and a finely ringed body with several long setae. The genital opening of both sexes is positioned proximally, closely behind the legs.

Distribution

Top of page

Since first reported from Mexico, A. guerreronis has been reported from many coconut-growing regions of the Americas, in West Africa from Côte d'Ivoire to Nigeria (Hall and Espinosa, 1981) and Gambia (Howard et al., 2001), Tanzania, India and Sri Lanka (Sathiama et al., 1998; CRI/UNDP, 2000). 

Distribution Table

Top of page
CountryDistributionLast ReportedOriginFirst ReportedInvasiveReferencesNotes

ASIA

IndiaPresentCABI/EPPO, 2006; EPPO, 2013
-Andaman and Nicobar IslandsPresentCABI/EPPO, 2006; EPPO, 2013
-Andhra PradeshPresentCABI/EPPO, 2006; EPPO, 2013
-GujaratPresentCABI/EPPO, 2006; EPPO, 2013
-KarnatakaPresentCABI/EPPO, 2006; EPPO, 2013; Basavaraj et al., 2012
-KeralaPresentSathiamma et al., 1998; EPPO, 2013
-LakshadweepPresentCABI/EPPO, 2006; EPPO, 2013
-MaharashtraPresentDesai et al., 2010
-OrissaPresentCABI/EPPO, 2006; EPPO, 2013
-Tamil NaduPresentMuthiah & Bhaskaran, 1999; EPPO, 2013
-West BengalPresentCABI/EPPO, 2006; EPPO, 2013
MalaysiaPresentCABI/EPPO, 2006; EPPO, 2013
MaldivesPresentMinistry of Fisheries and Agriculture, Maldives, 2011, personal communicationUpublished reports of A. guerreronis in Maldives.
PhilippinesPresentCABI/EPPO, 2006; EPPO, 2013
Sri LankaPresentMoore, 2000; CRI/UNDP, 2000; EPPO, 2013

AFRICA

BeninWidespreadEPPO, 2013
CameroonWidespreadEPPO, 2013
Côte d'IvoireWidespreadEPPO, 2013
GambiaPresentHoward et al., 2001; EPPO, 2013
MozambiquePresentCABI/EPPO, 2006; EPPO, 2013
NigeriaWidespreadEPPO, 2013
Sao Tome and PrincipeWidespreadEPPO, 2013
TanzaniaWidespreadCRI/UNDP, 2000; EPPO, 2013
TogoWidespreadEPPO, 2013

NORTH AMERICA

MexicoWidespreadEPPO, 2013
USAPresentCABI/EPPO, 2006; EPPO, 2013
-CaliforniaPresentCABI/EPPO, 2006; EPPO, 2013
-FloridaPresentHoward et al., 1990; EPPO, 2013

CENTRAL AMERICA AND CARIBBEAN

AnguillaPresentEPPO, 2013
BahamasWidespreadEPPO, 2013
BelizePresentCABI/EPPO, 2006; EPPO, 2013
Costa RicaPresentCABI/EPPO, 2006; EPPO, 2013
CubaWidespreadEPPO, 2013
DominicaPresentEPPO, 2013
Dominican RepublicPresentEPPO, 2013
GrenadaWidespreadEPPO, 2013
GuadeloupePresentEPPO, 2013
HaitiWidespreadEPPO, 2013
JamaicaWidespreadEPPO, 2013
MartiniquePresentEPPO, 2013
Puerto RicoWidespreadHoward et al., 1990; EPPO, 2013
Saint Kitts and NevisRestricted distributionEPPO, 2013
Saint LuciaPresentIntroducedInvasiveJn Pierre, 2008; EPPO, 2013
Saint Vincent and the GrenadinesWidespreadEPPO, 2013
Trinidad and TobagoWidespreadEPPO, 2013

SOUTH AMERICA

BrazilWidespreadEPPO, 2013
-AlagoasPresentCABI/EPPO, 2006; EPPO, 2013
-BahiaPresentCABI/EPPO, 2006; EPPO, 2013
-CearaPresentFreitas et al., 2006
-Minas GeraisPresentCABI/EPPO, 2006; EPPO, 2013
-PernambucoPresentCABI/EPPO, 2006; EPPO, 2013
-Rio de JaneiroPresentCABI/EPPO, 2006; EPPO, 2013
-Rio Grande do NortePresentCABI/EPPO, 2006; EPPO, 2013
-Rio Grande do SulPresentPereira et al., 2009
-Sao PauloPresentNávia et al., 2005
-SergipePresentCABI/EPPO, 2006; EPPO, 2013
ColombiaWidespreadEPPO, 2013
VenezuelaWidespreadEPPO, 2013

EUROPE

HungaryPresentGólya et al., 2002
PolandPresentSkoracka & Magowski, 2002; Jezewska, 2000

OCEANIA

AustraliaPresentCoutts et al., 2008; Halliday & Knihinicki, 2004

Risk of Introduction

Top of page

Probably limited in that only young nutlets carry the mite and these are unlikely to be transported. 

Habitat

Top of page

A. guerreronis occurs under the perianth of young nutlets of Cocos nucifera, largely from a few weeks to 7-8 months after fertilisation of the female flower. Migrating individuals may be found on the nut surface and populations have been recorded on seedlings. 

Hosts/Species Affected

Top of page

A. guerreronis is the only species of eriophyoid mite considered to be a serious pest of coconuts, Cocos nucifera. It was first described in 1965 from specimens from Guerrero State, Mexico (Keifer, 1965). Until reported from Lytocaryum weddellianum, a cocosoid palm species, it was only known from the coconut (Flechtmann, 1989) but has since been reported on Borassus flabellifer and Syagrus romanzoffiana

Growth Stages

Top of pageFlowering stage, Fruiting stage, Vegetative growing stage

Symptoms

Top of page

Populations of the mite develop on the meristematic zone of the young nuts, from as early as one month after fertilization. This area is covered by the perianth (collectively, the tepals, and often referred to as the bracts). Feeding of the mites in this zone apparently causes physical damage so that as newly formed tissue expands, the surface becomes necrotic and suberized, usually in distinct 'v' shape(s) extending down from the perianth. Uneven growth results in distortion and stunting of the coconut; usually the younger the nut when first attacked the greater the severity of damage. 

Symptoms List

Top of page
SignLife StagesType

Fruit

abnormal shape
gummosis
malformed skin
premature drop
reduced size

Biology and Ecology

Top of page

Relatively little is known of the biology of A. guerreronis; a review of eriophyoid mites of coconuts by Moore and Howard (1996) focused on this species and much of the data are derived from that work.

The adult female coconut mite is 36-52 µm wide and 205-255 µm long (Keifer, 1965). It can pass between the upper and lower tepals to reach the fruit surface covered by the perianth within a few weeks to a month after fertilization of the flower (Ortega et al., 1965; Mariau and Julia, 1970; Hall and Espinosa, 1981; Moore and Alexander, 1987a; Howard and Abreu-Rodríguez, 1991). The perianth almost completely covers the young fruit, providing protection against many hazards. During the first month of development the tepals are tightly adpressed to the fruit (Howard and Abreu-Rodríguez, 1991), so that the perianth gives maximal protection. As the fruit develops, it becomes increasingly larger in relation to the perianth, and within about a month spaces develop between the coconut surface and the perianth which are sufficiently large to permit the entry of coconut mites. With a development cycle from egg to adult of about 10 days (Mariau, 1977) mite numbers can build up rapidly. Spermatophores associated with coconut mite colonies have been observed underneath the perianth, showing that reproductive activities take place there. The fruits remain susceptible to mite attack almost throughout the whole development, but decreasingly so after the nut reaches full size. On more mature fruits (10-13 months), coconut mites are found rarely and in small numbers (Hall and Espinoza, 1981; Moore and Alexander, 1987a).

The coconut mite is found in tropical and subtropical climates, but populations can survive both short periods of freezing temperatures and periods of cool temperatures more prolonged than those normally encountered where coconut palms are grown (Howard et al., 1990). Some workers claim that coconut mite attacks are more severe in relatively dry climates or during the dry season of wetter climates (Zuluaga and Sanchez, 1971; Griffith, 1984). However, in other localities there is no detectable relationship between coconut mite populations and wet and dry weather (Doreste, 1968; Mariau, 1969, 1977; Howard et al., 1990).

 

Natural Enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Acremonium recifeiPathogenAdults/NymphsIvory CoastCocos nucifera
Hirsutella nodulosaPathogenAdults/Larvae/Nymphs
Hirsutella thompsoniiPathogenAdults/Larvae/NymphsSt LuciaCocos nucifera
Lecanicillium lecaniiPathogenAdults/Nymphs
Sporothrix fungorumPathogenKumar et al., 2001

Notes on Natural Enemies

Top of page

The following information has been drawn from Moore and Howard (1996). The coconut mite is not attacked by parasitoids, and their sheltered habitat and biology provide few opportunities for other natural enemies to be effective. Theoretically, predators could attack the coconut mite during dispersal, which occurs regularly (Moore and Alexander, 1987a), and some have been observed occupying the meristematic zone of coconut fruits. These include Bdella distincta, Amblyseius largoensis, Neoseiulus mumai and N. paspalivorus (Howard et al., 1990), two phytoseiids and a tarsonemid (Julia and Mariau, 1979). Predaceous mites are observed only occasionally and in very small populations on infested coconuts, and there is no evidence that they make a significant impact on coconut mite populations (Hall et al., 1980; Howard et al., 1990). In Sri Lanka, N. paspalivorus is considered to cause significant reductions in pest populations (CRI/UNDP, 2000).

The acerogenous fungus, Hirsutella thompsoni, has been isolated from samples of coconut mites from tropical America and West Africa (Hall et al., 1980) and from samples of Colomerus novahebridensis from New Hebrides, New Guinea and Sri Lanka (Hall et al., 1980). In Mexico, up to 75% mortality was achieved using the fungus (Espinosa and Carrillo, 1986), but no success was reported in West Africa (Anon., 1989) or from limited trials in St Lucia (Moore et al., 1989). In laboratory trials, Sampedro and Rosa (1989) tested seven isolates of H. thompsonii; mortality ranged from 88% with an isolate from A. guerreronis to 32% with one obtained from Phyllocoptruta oleivora.

Another acerogenous species attacking A. guerreronis, Hirsutella nodulosa, has been reported from Cuba (Cabrera and Dominguez, 1987).

Means of Movement and Dispersal

Top of page

Natural Dispersal (non-biotic)

The principal method by which coconut mites spread and colonize new palms, particularly over long distances, is almost certainly through aerial dispersal of inseminated female mites. The coconut palm provides a large target for aerially dispersed organisms, and air currents may carry the mites to racemes, or to the more vertical leaves in the crown, from which they may drop to inflorescences. Coconut mites can walk between touching inflorescences, and, being negatively geotactic, tend to move from older to younger inflorescences (Moore and Alexander, 1987a). Coconut mites walk at a rate of 20-100 µm per second but are probably inefficient in finding sites to colonize. A high reproductive rate and rapid development compensate for inefficient dispersal and host-finding.

Vector Transmission

Some dispersal may take place by phoresy, either on animals directly attracted to the inflorescences (for example, pollinating insects such as bees; rodents which feed on the fruits), or on those attracted by such animals (for example, predatory lizards, birds, predaceous insects).

Seedborne Spread

This is unlikely as the mature nut is not infested by mites.

Agricultural Practices

Coconut seedlings can be infested and it is theoretically possible for dispersal to occur by movement of seedlings; this has not been reported.

Movement in Trade

This is unlikely as the mature nut is not infested by mites.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods)adults; eggs; larvae; nymphsNoYesPest or symptoms not visible to the naked eye but usually visible under light microscope
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs, Tubers, Corms, Rhizomes
Growing medium accompanying plants
Leaves
Roots
Stems (above ground), Shoots, Trunks, Branches
True seeds (inc. grain)
Wood

Impact

Top of page

Accurate crop loss assessments are rarely done, but estimates range from 7.5% (Julia and Mariau, 1979) and 30% (Hernández, 1977) to 60% (Griffith, 1984) and some attacks may be so bad that farmers stop harvesting. Yield losses depend on cultivar, age, health and general maintenance of the crop, climate etc, but average copra losses may be 20-30% with premature nut fall and increased difficulty in dehusking (leading to greater labour requirements for this job) also contributing to economic loss. 

Diagnosis

Top of page

Removal of the tepals and microscopic examination at which point eriophyoid mites can be easily distinguished. Full confirmation requires mounting and careful taxonomic study (Amrine and Manson, 1996). 

Detection and Inspection

Top of page

The scarring and distortion of nutlets can be observed from the ground, although with taller trees the use of binoculars may be necessary. Harvested nuts also bear the marks, although few, if any, mites will be found on these.

Similarities to Other Species/Conditions

Top of page

Colomerus novahebridensis, widespread in South-East Asia and Oceania occurs mainly on the fruits, producing scarring similar to that of A. guerreronis (Hall et al., 1980). It apparently has no significant impact on coconut production (Kang, 1981). However, this species has been reported as causing damage on a few West African hybrids in the Philippines. Dolicotetranychus sp. also causes similar scarring, but causes flat-bottomed marks, sometimes as discrete rings around the circumference of the nut rather than distinctive 'v'-shaped marks.
 

Prevention and Control

Top of page

Chemical control of the coconut mite is possible; chinomethionate sprayed onto bunches of developing fruits every 20 or 30 days significantly reduced damage (Hernández, 1977). Similar results were obtained with acaricides applied at 15-day, but not 60-day, intervals (Mariau and Tchibozo, 1973).

Varietal differences in susceptibility occur (Mariau, 1986) and breeding may provide a long term solution. The tightness of fit of the perianth may be critical (Mariau, 1986; Moore, 1986; Howard and Abreu-Rodríquez, 1991) and this may be a varietal characteristic and also one influenced by agronomy and climate.

Experimentally, the use of Hirsutella species-based mycoacaricides has shown good field results but the development of successful products demands more research. Aratchige et al. (2009) summarized research on the potential of Neoseiulus baraki and Hirsutella thompsonii as biological control agents of A. guerreronis on coconut in Sri Lanka.

Good management, replacing old trees, providing balanced fertilizer regimes and generally maintaining healthy trees may increase the tolerance of trees to attack and hence reduce yield losses.

Nair et al. (2005) provide an overview of bioecology and management of A. guerreronis.

References

Top of page

Amrine JW Jr, Manson DCM, 1996. Preparation, mounting and descriptive study of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J, eds. Eriophyoid mites their biology, natural enemies and control. Amsterdam, The Netherlands: Elsevier, 383-396.

Anon., 1989. Eriophyes guerreronis. OlTagineux, 44:130-131.

Aratchige NS, Fernando LCP, Kumara ADNT, Suwandharathne NI, Perera KFG, Hapuarachchi DCL, Silva PHPRde, 2009. Advances in research on biological control of the coconut mite, Aceria guerreronis Keifer in Sri Lanka. Indian Coconut Journal, 52(5):23-30. http://www.coconutboard.nic.in

Arunachalam V, Jerard BA, Elain Apshara S, Jayabose C, Subaharan K, Ravikumar N, Palaniswami C, 2013. Digital phenotyping of coconut and morphological traits associated with eriophyid mite (Aceria guerroronis Keifer) infestation. Journal of Plantation Crops, 41(3):417-424.

Basavaraj Kalmath, Mallik B, Onkarappa S, Girish R, Srinivasa N, 2012. Isolation, genetic diversity and identification of a virulent pathogen of eriophyid mite, Aceria guerreronis (Acari: Eriophyidae) by DNA marker in Karnataka, India. African Journal of Biotechnology, 11(104):16790-16799. http://www.academicjournals.org/AJB/abstracts/abs2012/27Dec/Kalmath%20et%20al.htm

CABI/EPPO, 2006. Aceria guerreronis. Distribution Maps of Plant Pests, No. 680. Wallingford, UK: CAB International.

Cabrera RI, Dominguez D, 1987. Hirsutella nodulosa fungus, a new pathogen for the coconut mite Eriophyes guerreronis. Ciencia y Tecnica en la Agricultura, Citricos y Otros Frutales, 10(1):41-51

Coutts BA, Strickland GR, Kehoe MA, Severtson DL, Jones RAC, 2008. The epidemiology of Wheat streak mosaic virus in Australia: case histories, gradients, mite vectors, and alternative hosts. Australian Journal of Agricultural Research, 59(9):844-853. http://www.publish.csiro.au/view/journals/dsp_journal_fulltext.cfm?nid=40&f=AR07475

CRI/UNDP, 2000. Workshop on Coconut Mite (Aceria guerreronis. An international workshop organized by Coconut Research Institute, Sri Lanka, 6-8 January 2000. Sponsored by United Nations Development Programme (UNDP) and Coconut Research Institute, Sri Lanka. Abstracts.

Desai VS, Nagwekar DD, Desai SS, 2010. Evaluation of neem based pesticides against coconut eriophyid mite, Aceria guerreronis Keifer in Konkan region of Maharashtra. Green Farming, 3(2):133-135. http://www.greenfarming.in

Doreste ES, 1968. El ßcaro de la flor del cocotero (Aceria guerreronis) en Venezuela. Agronomfa Tropical, 18:379-386.

EPPO, 2013. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Espinosa Becerril A, Carrillo Sanchez JL, 1986. The fungus Hirsutella thompsonii Fisher for the control of the eriophyid Eriophyes guerreronis (Keifer). Agricultura Tecnica en Mexico, 12(2):319-323

Flechtmann CHW, 1989. Cocos weddelliana H. Wendl. (Palmp: Arecaceae), a new host plant for Eriophyes guerreronis (Keifer,1965) (Acari: Eriophyidae) in Brazil. International Journal of Acarology, 15(4):241

Freitas JDBde, Innecco R, Mendes AJP, Gonçalves MEde C, 2006. Alternative control of the coconut mite, Aceria guerreronis. (Controle alternativo do ácaro da necrose do coqueiro.) Revista Ciência Agronômica, 37(3):315-320.

Gólya G, Kozma E, Szabó M, 2002. New data to the knowledge on the eriophyoid fauna on grasses in Hungary (Acari: Eriophyoidea). Acta Phytopathologica et Entomologica Hungarica, 37(4):409-412.

Griffith R, 1984. The problem of the coconut mite, Eriophyes guerreronis (Keifer), in the coconut groves of Trinidad and Tobago. In: Webb R, Knausenberger W, Yntema L, eds. Proceedings of the 20th Annual Meeting of the Caribbean Food Crops Society, St. Croix, US Virgin Islands, 21-26 October, 1984. East Caribbean Center, College of the Virgin Islands and Caribbean Food Crops Society, 128-132.

Hall RA, Espinosa BA, 1981. The coconut mite, Eriophyes guerreronis, with special reference to the problem in Mexico. Proceedings, 1981 British Crop Protection Conference - Pests and Diseases, 113-120.

Hall RA, Hussey NW, Mariau D, 1980. Results of a survey of biological control agents of the coconut mite, Eriophyes guerreronis. Oleagineux, 35(8/9):395-400

Halliday RB, Knihinicki DK, 2004. The occurrence of Aceria tulipae (Keifer) and Aceria tosichella Keifer in Australia (Acari: Eriophyidae). International Journal of Acarology, 30(2):113-118.

Hernßndez RF, 1977. Combate qufmico del eri=fido del cocotero Aceria (Eriophyes) guerreronis (K) en la Costa de Guerrero. Agricultura TTcnica en MTxico, 4:23-38.

Howard FW, Abreu-Rodrfguez E, Denmark HA, 1990. Geographical and seasonal distribution of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), in Puerto Rico and Florida, USA. Journal of Agriculture of the University of Puerto Rico, 74:237-251.

Howard FW, Giblin-Davis R, Moore D, Abad R, 2001. Insects on Palms. Wallingford, UK: CAB International.

Howard FW, Rodriguez EA, 1991. Tightness of the perianth of coconuts in relation to infestation by coconut mites. Florida Entomologist, 74(2):358-361

Jezewska M, 2000. Incidence of Wheat streak mosaic virus in Poland in the years 1998-1999. Phytopathologia Polonica, No. 20:77-83.

Jn Pierre L, 2008. Mitigating the Threat of Invasive Alien Species in the Insular Caribbean (Saint Lucia). Report to CABI. 56 pp.

Julia JF, Mariau D, 1979. New research on the coconut mite, Eriophyes guerreronis K., in the Ivory Coast. Oleagineux, 34(4):181-189

Kang SM, 1981. Malaysia - eriophyid and tarsonemid mites on coconut. Plant Protection Bulletin, FAO, 29(3/4):79

Keifer HH, 1965. Eriophyid studies B -14. California Department of Agriculture, Bureau of Entomology.

Kumar PS, Singh SP, Anuroop CP, 2001. First report of Sporothrix fungorum de Hoog & de Vries as a pathogen of Aceria guerreronis Keifer, the coconut eriophyid mite. Insect Environment, 7(3):106-107.

Mariau D, 1969. Aceria guerreronis Keifer: rTcent ravageur de la cocoteraie DahomTenne. OlTagineux, 24:269-272.

Mariau D, 1977. Aceria (Eriophyes) guerreronis: an important pest of African and American coconut plantations. Oleagineux, 32(3):101-111

Mariau D, 1986. Behaviour of Eriophyes guerreronis Keifer with respect to different varieties of coconut. Oleagineux, 41(11):499-505

Mariau D, Julia JF, 1970. L'acariose a Aceria guerreronis (Keifer), ravageur du cocotier. OlTagineux, 25:459-464.

Mariau D, Tchibozo, HM, 1973. Essais de lutte chimique contre Aceria guerreronis (Keifer). OlTagineux, 28:133-135.

Moore D, 1986. Bract arrangement in the coconut fruit in relation to attack by the coconut mite Eriophyes guerreronis Keifer. Tropical Agriculture, 63(4):285-288

Moore D, 2000. Non-chemical control of Aceria guerreronis on coconuts. Biocontrol News and Information, 21(3):83N-88N; 32 ref.

Moore D, Alexander L, 1987. Aspects of migration and colonization of the coconut palm by the coconut mite, Eriophyes guerreronis (Keifer) (Acari: Eriophyidae). Bulletin of Entomological Research, 77(4):641-650

Moore D, Alexander L, 1987. Stem injection of vamidothion for control of coconut mite, Eriophyes guerreronis Keifer, in St. Lucia. Crop Protection, 6(5):329-333

Moore D, Alexander L, Hall RA, 1989. The coconut mite, Eriophyes guerreronis Keifer in St. Lucia: yield losses and attempts to control it with acaricide, polybutene and Hirsutella fungus. Tropical Pest Management, 35(1):83-89

Moore D, Howard FW, 1996. Coconuts. In: Lindquist EE, Sabelis MW, Bruin J, eds. Eriophyoid mites their biology, natural enemies and control. Amsterdam, The Netherlands: Elsevier, 561-570.

Muthiah C, Bhaskaran R, 1999. Screening of coconut genotypes and management of eriophyid mite Aceria guerreronis (Eriophyidae: Acari) in Tamil Nadu. Indian Coconut Journal (Cochin), 30(6):10-11; 3 ref.

Nair CPR, Rajan P, Chandrika Mohan, 2005. Coconut eriophyid mite Aceria guerreronis Keifer - an overview. Indian Journal of Plant Protection, 33(1):1-10.

Návia D, Moraes GJde, Lofego AC, Flechtmann CHW, 2005. Acarofauna associated with coconut fruits (Cocos nucifera L.) from some localities in America. (Acarofauna associada a frutos de coqueiro (Cocos nucifera L.) de algumas localidades das Américas.) Neotropical Entomology, 34(2):349-354.

Ortega CA, Rodriguez VJ, Garibay VC, 1965. Investigaciones preliminares sobre el eri=fido del fruto del cocotero, Aceria guerreronis Keifer, en la Costa Grande de Guerrero. Agricultura TTcnica en MTxico, 2:222-226.

Pereira PRVda S, Navia D, Salvadori JR, Lau D, 2009. Occurrence of Aceria tosichella in Brazil. Pesquisa Agropecuária Brasileira, 44(5):539-542. http://www.scielo.br/pab

Sampedro L, Rosa JL, 1989. Seleccion de cepas de Hirsutella thompsonii Fisher para combatir al ßcaro del cocotero, Eriophyes guerreronis Keifer. I. Bioensayos de patogenicidad. Revista Mexicana de Micologia, 5:225-232.

Sathiamma B, Nair CPR, Koshy PK, 1998. Outbreak of a nut infesting eriophyid mite Eriophyes guerreronis (K.) in coconut plantations in India. Indian Coconut Journal (Cochin), 29(2):1-3; 8 ref.

Silva RVda, Narita JPZ, Vichitbandha P, Chandrapatya A, Konvipasruang P, Kongchuensin M, Moraes GJde, 2014. Prospection for predatory mites to control coconut pest mites in Thailand, with taxonomic descriptions of collected Mesostigmata (Acari). Journal of Natural History, 48(11/12):699-719. http://www.tandfonline.com/loi/tnah20

Skoracka A, Magowski W, 2002. Two species of eriophyoid mites (Acari, Prostigmata) in wheat cultivation (Triticum aestivum L.) and associated grass community in Wielkopolska, Poland. Journal of Applied Entomology, 126(9):481-483.

Zuluaga CI, Sanchez PA, 1971. La ro±a o escoriaci=n de los frutos del cocotero (Cocos nucifera L.) en Colombia. OlTagineux, 26:767-770.

Distribution Maps

Top of page
Distribution map Anguilla: Present
EPPO, 2013Australia: Present
Coutts et al., 2008; Halliday & Knihinicki, 2004Benin: Widespread
EPPO, 2013Brazil: Widespread
EPPO, 2013Brazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBrazil
See regional map for distribution within the countryBahamas: Widespread
EPPO, 2013Bahamas: Widespread
EPPO, 2013Belize: Present
CABI/EPPO, 2006; EPPO, 2013Belize: Present
CABI/EPPO, 2006; EPPO, 2013Côte d'Ivoire: Widespread
EPPO, 2013Cameroon: Widespread
EPPO, 2013Colombia: Widespread
EPPO, 2013Colombia: Widespread
EPPO, 2013Costa Rica: Present
CABI/EPPO, 2006; EPPO, 2013Costa Rica: Present
CABI/EPPO, 2006; EPPO, 2013Cuba: Widespread
EPPO, 2013Cuba: Widespread
EPPO, 2013Dominica: Present
EPPO, 2013Dominican Republic: Present
EPPO, 2013Dominican Republic: Present
EPPO, 2013Grenada: Widespread
EPPO, 2013Gambia: Present
Howard et al., 2001; EPPO, 2013Gambia: Present
Howard et al., 2001; EPPO, 2013Guadeloupe: Present
EPPO, 2013Haiti: Widespread
EPPO, 2013Haiti: Widespread
EPPO, 2013Hungary: Present
Gólya et al., 2002India: Present
CABI/EPPO, 2006; EPPO, 2013India
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryIndia
See regional map for distribution within the countryJamaica: Widespread
EPPO, 2013Jamaica: Widespread
EPPO, 2013Saint Kitts and Nevis: Restricted distribution
EPPO, 2013Saint Lucia: Present, introduced, invasive
Jn Pierre, 2008; EPPO, 2013Sri Lanka: Present
Moore, 2000; CRI/UNDP, 2000; EPPO, 2013Martinique: Present
EPPO, 2013Maldives: PresentMexico: Widespread
EPPO, 2013Mexico: Widespread
EPPO, 2013Malaysia: Present
CABI/EPPO, 2006; EPPO, 2013Mozambique: Present
CABI/EPPO, 2006; EPPO, 2013Nigeria: Widespread
EPPO, 2013Philippines: Present
CABI/EPPO, 2006; EPPO, 2013Philippines: Present
CABI/EPPO, 2006; EPPO, 2013Poland: Present
Skoracka & Magowski, 2002; Jezewska, 2000Puerto Rico: Widespread
Howard et al., 1990; EPPO, 2013Puerto Rico: Widespread
Howard et al., 1990; EPPO, 2013Sao Tome and Principe: Widespread
EPPO, 2013Togo: Widespread
EPPO, 2013Trinidad and Tobago: Widespread
EPPO, 2013Trinidad and Tobago: Widespread
EPPO, 2013Tanzania: Widespread
CRI/UNDP, 2000; EPPO, 2013USA: Present
CABI/EPPO, 2006; EPPO, 2013USA: Present
CABI/EPPO, 2006; EPPO, 2013USA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countrySaint Vincent and the Grenadines: Widespread
EPPO, 2013Venezuela: Widespread
EPPO, 2013Venezuela: Widespread
EPPO, 2013
  • = Present, no further details
  • = Evidence of pathogen
  • = Widespread
  • = Last reported
  • = Localised
  • = Presence unconfirmed
  • = Confined and subject to quarantine
  • = See regional map for distribution within the country
  • = Occasional or few reports
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Distribution map (asia) India: Present
CABI/EPPO, 2006; EPPO, 2013Andaman and Nicobar Islands: Present
CABI/EPPO, 2006; EPPO, 2013Andhra Pradesh: Present
CABI/EPPO, 2006; EPPO, 2013Gujarat: Present
CABI/EPPO, 2006; EPPO, 2013Kerala: Present
Sathiamma et al., 1998; EPPO, 2013Karnataka: Present
CABI/EPPO, 2006; EPPO, 2013; Basavaraj et al., 2012Lakshadweep: Present
CABI/EPPO, 2006; EPPO, 2013Maharashtra: Present
Desai et al., 2010Orissa: Present
CABI/EPPO, 2006; EPPO, 2013Tamil Nadu: Present
Muthiah & Bhaskaran, 1999; EPPO, 2013West Bengal: Present
CABI/EPPO, 2006; EPPO, 2013Sri Lanka: Present
Moore, 2000; CRI/UNDP, 2000; EPPO, 2013Maldives: PresentMalaysia: Present
CABI/EPPO, 2006; EPPO, 2013Philippines: Present
CABI/EPPO, 2006; EPPO, 2013
Distribution map (europe) Hungary: Present
Gólya et al., 2002Poland: Present
Skoracka & Magowski, 2002; Jezewska, 2000
Distribution map (africa) Benin: Widespread
EPPO, 2013Côte d'Ivoire: Widespread
EPPO, 2013Cameroon: Widespread
EPPO, 2013Gambia: Present
Howard et al., 2001; EPPO, 2013Gambia: Present
Howard et al., 2001; EPPO, 2013Mozambique: Present
CABI/EPPO, 2006; EPPO, 2013Nigeria: Widespread
EPPO, 2013Sao Tome and Principe: Widespread
EPPO, 2013Togo: Widespread
EPPO, 2013Tanzania: Widespread
CRI/UNDP, 2000; EPPO, 2013
Distribution map (north america) Bahamas: Widespread
EPPO, 2013Belize: Present
CABI/EPPO, 2006; EPPO, 2013Cuba: Widespread
EPPO, 2013Dominican Republic: Present
EPPO, 2013Haiti: Widespread
EPPO, 2013Jamaica: Widespread
EPPO, 2013Mexico: Widespread
EPPO, 2013Puerto Rico: Widespread
Howard et al., 1990; EPPO, 2013USA: Present
CABI/EPPO, 2006; EPPO, 2013California: Present
CABI/EPPO, 2006; EPPO, 2013Florida: Present
Howard et al., 1990; EPPO, 2013
Distribution map (central america) Anguilla: Present
EPPO, 2013Bahamas: Widespread
EPPO, 2013Belize: Present
CABI/EPPO, 2006; EPPO, 2013Colombia: Widespread
EPPO, 2013Costa Rica: Present
CABI/EPPO, 2006; EPPO, 2013Cuba: Widespread
EPPO, 2013Dominica: Present
EPPO, 2013Dominican Republic: Present
EPPO, 2013Grenada: Widespread
EPPO, 2013Guadeloupe: Present
EPPO, 2013Haiti: Widespread
EPPO, 2013Jamaica: Widespread
EPPO, 2013Saint Kitts and Nevis: Restricted distribution
EPPO, 2013Saint Lucia: Present, introduced, invasive
Jn Pierre, 2008; EPPO, 2013Martinique: Present
EPPO, 2013Mexico: Widespread
EPPO, 2013Puerto Rico: Widespread
Howard et al., 1990; EPPO, 2013Trinidad and Tobago: Widespread
EPPO, 2013USA: Present
CABI/EPPO, 2006; EPPO, 2013Florida: Present
Howard et al., 1990; EPPO, 2013Saint Vincent and the Grenadines: Widespread
EPPO, 2013Venezuela: Widespread
EPPO, 2013
Distribution map (south america) Brazil: Widespread
EPPO, 2013Alagoas: Present
CABI/EPPO, 2006; EPPO, 2013Bahia: Present
CABI/EPPO, 2006; EPPO, 2013Ceara: Present
Freitas et al., 2006Minas Gerais: Present
CABI/EPPO, 2006; EPPO, 2013Pernambuco: Present
CABI/EPPO, 2006; EPPO, 2013Rio de Janeiro: Present
CABI/EPPO, 2006; EPPO, 2013Rio Grande do Norte: Present
CABI/EPPO, 2006; EPPO, 2013Rio Grande do Sul: Present
Pereira et al., 2009Sergipe: Present
CABI/EPPO, 2006; EPPO, 2013Sao Paulo: Present
Návia et al., 2005Colombia: Widespread
EPPO, 2013Costa Rica: Present
CABI/EPPO, 2006; EPPO, 2013Trinidad and Tobago: Widespread
EPPO, 2013Venezuela: Widespread
EPPO, 2013
Distribution map (pacific) Australia: Present
Coutts et al., 2008; Halliday & Knihinicki, 2004Philippines: Present
CABI/EPPO, 2006; EPPO, 2013