Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

Continuing to use www.cabi.org/isc means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Datasheet

Cannabis sativa

Summary

  • Last modified
  • 11 November 2009
  • Datasheet Type(s)
  • Invasive Species
  • Host Plant
  • Preferred Scientific Name
  • Cannabis sativa
  • Preferred Common Name
  • hemp
  • Taxonomic Tree
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Flowering C. sativa plant, Bhutan.
TitleFlowering plant
CaptionFlowering C. sativa plant, Bhutan.
Copyright©Chris Parker
Flowering C. sativa plant, Bhutan.
Flowering plantFlowering C. sativa plant, Bhutan.©Chris Parker
Male flowers and foliage.
TitleFlowers
CaptionMale flowers and foliage.
Copyright©Chris Parker
Male flowers and foliage.
FlowersMale flowers and foliage.©Chris Parker
C. sativa seedling.
TitleSeedling
CaptionC. sativa seedling.
Copyright©Chris Parker
C. sativa seedling.
SeedlingC. sativa seedling. ©Chris Parker
Fibre hemp harvesting with a mowing machine
TitleHarvesting
CaptionFibre hemp harvesting with a mowing machine
Copyright©John McPartland
Fibre hemp harvesting with a mowing machine
Harvesting Fibre hemp harvesting with a mowing machine©John McPartland
Hemp harvesting with a combine fitted with a cutting head
TitleHarvesting
CaptionHemp harvesting with a combine fitted with a cutting head
Copyright©John McPartland
Hemp harvesting with a combine fitted with a cutting head
HarvestingHemp harvesting with a combine fitted with a cutting head©John McPartland
Drying a crop of pharmaceutical-grade drug Cannabis at GW Pharmaceuticals.
TitleDrying
CaptionDrying a crop of pharmaceutical-grade drug Cannabis at GW Pharmaceuticals.
Copyright©John McPartland
Drying a crop of pharmaceutical-grade drug Cannabis at GW Pharmaceuticals.
DryingDrying a crop of pharmaceutical-grade drug Cannabis at GW Pharmaceuticals.©John McPartland
Fibre hemp used as a pollen barrier for breeding of sugar beet in Yugoslavia.
TitlePollen barrier
CaptionFibre hemp used as a pollen barrier for breeding of sugar beet in Yugoslavia.
Copyright©John McPartland
Fibre hemp used as a pollen barrier for breeding of sugar beet in Yugoslavia.
Pollen barrierFibre hemp used as a pollen barrier for breeding of sugar beet in Yugoslavia.©John McPartland

Identity

Top of page

Preferred Scientific Name

  • Cannabis sativa L., 1753

Preferred Common Name

  • hemp

Other Scientific Names

  • Cannabis indica Lam.
  • Cannabis ruderalis Janisch.

International Common Names

  • English: marijuana
  • Spanish: canamo; sinsemilla
  • French: chanvre
  • Russian: konoplya
  • Arabic: hashish; kannab
  • Chinese: ma fen; ta ma
  • Portuguese: canhamo

Local Common Names

  • Brazil: maconha
  • Germany: Hanf
  • Hungary: kender
  • India: charas; ganja
  • Italy: canapa
  • Japan: asa
  • Netherlands: hennep
  • Poland: kenop
  • South Africa: dagga
  • Sweden: hampa

EPPO code

  • CNIRU (Cannabis ruderalis)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Urticales
  •                         Family: Cannabaceae
  •                             Genus: Cannabis
  •                                 Species: Cannabis sativa

Notes on Taxonomy and Nomenclature

Top of pageThe taxonomy of Cannabis remains in flux. The genus may be monotypic, consisting of one species Cannabis sativa, according to Small and Cronquist (1976). Others consider the genus polytypic, with two or more additional species such as Cannabis indica, Cannabis ruderalis and Cannabis 'afghanica' (Schultes et al., 1974). McPartland et al. (2000) indicates that the segregates are often misnamed, e.g. C. indica is misnamed C. sativa, and C. 'afghanica' is misnamed C. indica or C. ruderalis.

Small and Cronquist (1976) based their Cannabis taxonomy on plant concentration of tetrahydrocannabinol (THC), which is the psychoactive compound unique to Cannabis. Since the 1940s, fibre hemp breeders have been reducing the THC content (Bòcsa and Karus, 1997). Conversely, breeders of drug Cannabis have been increasing the THC content (Szendrei, 1997). Cannabis segregates can interbreed and hybridize, as shown by X Cannabis intersita Sojak. Furthermore, C. sativa and C. indica escape cultivation and grow wild; these have been called C. ruderalis (Small and Cronquist, 1976). Here, Cannabis segregates are described as 'biotypes'.

Description

Top of pageGeneral

The seeds (achenes) are round to nearly lens-shaped, with a round base, surface green-brown to grey, marbled or unmarbled, with or without an abscission layer at the base, ranging in size from 1.5 to 4 mm long.

Young seedlings produce a pair of cotyledons, which are fleshy, somewhat oval (narrowed at the sessile base), with an entire margin. Cotyledons are followed by the first pair of true leaves, which are coarsely serrate, long, lanceolate, with a dark green upper surface and whitish-green lower surface.

During the early vegetative stage, seedlings form up to five true leaf pairs, oppositely arranged, with short internodes. The first true leaves are single leaflets, thereafter, leaves become palmately compound. The second leaf pair consist of three leaflets per leaf, the third leaf pair has five leaflets per leaf, and so on, up to eleven leaflets per leaf.

Later in the vegetative stage, stalk elongation accelerates and internode distance increases. The stalk normally does not branch, it is often hollow at maturity, its surface is generally ridged or fluted, and covered with a fine scabrous layer of cystolith trichomes. The root system is vigorous and centred by a taproot.

Flowering stage begins with a change in phyllotaxis, from opposite to alternate, and stalk elongation is reduced. Plants are quite aromatic by this stage. Most plants are dioecious, although monoecious hemp cultivars have been bred in Europe. Early flower primordia appear at the base of petioles. Male primordia appear first. They have a curved claw shape, which grows into a pointed cone consisting of five fused tepals.

Male (staminate) inflorescences are loosely branched cymose panicles. Tepals open and five anthers hang from flaccid filaments. Pollen grains are nearly spherical, smooth, 25-30 µm diameter, and light yellow. Female (pistillate) inflorescence tend to branch less and grow more compact and leafy. Leaves and bracts are often densely covered with resinous glandular hairs. Female flowers are inconspicuous - a pair of small, white styles emerging from each perigonal bract.

After pollination, the styles of pistillate flowers atrophy and necrose, while the bract swells. The perianth is papery, continuous, and closely appressed to the ovary. The perianth persists on the surface of the single seed (achene).

Hemp fibres are bast or phloem cells, only 10 µm wide, but up to 7.5 cm long. The fibres overlap in bundles containing from 10-40 cells per bundle. Fibre bundles often run the entire length of plants. Approximately 25 bundles lie around stems, embedded in a ring of phloem parenchyma.

The morphological descriptions of the 'biotypes' presented below are adapted from work by Schultes et al. (1974), Small and Cronquist (1976) and McPartland et al. (2000).

Cannabis sativa [syn. C. sativa subsp. sativa]:

Plants tall (up to 6 m), stems smooth and hollow, laxly branched with long internodes; petioles short, usually 5-9 leaflets per leaf, leaflets lanceolate, largest leaflets averaging 136 mm long (length/width ratio = 7.5); racemes have long internodes, and achenes are partially exposed; achenes (seeds) usually 3.7 mm long, somewhat lens-shaped with a blunt base, surface dull light-to-dark green and usually unmarbled, seeds usually adherent to plants at maturity. Cultivated for fibre, oil, and sometimes for drugs.

Cannabis indica [syn. C. sativa subsp. indica]:

Plants shorter (under 3 m), stems smooth and nearly solid, densely branched with shorter internodes; petioles shorter, usually 7-11 leaflets per leaf; leaflets narrow lanceolate, largest leaflets averaging 92 mm long (l/w ratio = 10); achenes averaging 3.7 mm long, less lens-shaped, with a more rounded base, surface green-brown and marbled or unmarbled, with or without an abscission layer. Cultivated primarily for drugs but also used for fibre and oil.

Cannabis ruderalis [syn. C. sativa var. spontanea]:

Plants small (usually under 0.5 m), stems smooth and hollow, occasionally unbranched; petioles short, usually 5-7 leaflets per leaf, leaflets elliptic, largest leaflets averaging 60 mm long (l/w ratio = 6); achenes small with a pronounced abscission structure at the base, surface dull green and marbled, abscission layer fleshy with oil-producing cells, seeds readily shed from plant. Feral, not cultivated.

Cannabis 'afghanica' [syn. C. sativa var. afghanica]:

Plants short (under 1.5 m), stems ribbed and nearly solid, densely branched with short internodes; petioles long, usually 7-11 leaflets per leaf, leaflets dark green and broadly oblanceolate, largest leaflets averaging 130 mm (l/w ratio =5); racemes have short internodes, and achenes are not exposed; nested, compound bracts sometimes produced; achenes usually <3.0 mm long, nearly round with a blunt base, surface shiny grey and marbled. Cultivated for drugs, primarily hashish.

Distribution

Top of pageC. sativa originated in temperate central Asia. De Candolle suggests that C. sativa originated in a region between the Caspian Sea and Lake Baikal; Vavilov believes it to be an area around the Altai Mountains; and McPartland proposes the southern Tien Shan Mountains. Authors from India favour an origin in the Himalayas, and Chinese authors propose sites along the Yangtze or Yellow rivers.

In 450 BC, Herodotus wrote the first account of fibre hemp cultivation in Scythia. The migratory Scythians transported C. sativa to Europe, and possibly carried fibre hemp to China. However, in China the use of the seed in food preceded the Scythian migration.

European fibre hemp cultivation expanded in the 1500s and 1600s, to meet the demand for ropes and sails in the shipping industry. European explorers spread hemp cultivation throughout the Americas, Australia, and western Africa. Later, demand for fibre hemp declined with the introduction of steamships, and the shift to finer yarns and synthetic fibres in the textile industry.

The first record of drug use of C. sativa was the prehistoric Scythians (Herodotus, 1906). Prior to this, however, cannabis was introduced to the Indian subcontinent, perhaps 12,000 years ago (Able, 1980). Drug cultivation spread from India to Arabia, eastern Africa, southern Africa, and South-East Asia. During the 1800s, servants from India carried seeds to Jamaica, and from here drug cultivation spread within the Gulf of Mexico.

Today the distribution of C. sativa cultivation is poorly documented. The FAO reports inaccurate statistics and cites 15 hemp-growing countries (FAO, 2000). Statistics by the EU are more accurate (Mignoni, 1997). Nova Institute (Karus et al., 2000) supplements the EU statistics with results of monitoring 31 countries. A list of major centres of cultivation for a minor crop such as C. sativa, is liable to change and become out of date. The drug cannabis, for instance, is grown almost globally (the ODCCP cites 120 countries), but few countries are consistent and have significant exportation.

Distribution Table

Top of page
CountryDistributionLast ReportedOriginFirst ReportedInvasiveReferencesNotes

ASIA

ChinaPresentFAO, 2009Hemp Tow Waste production (2008) 30,000 MT (F)
-AnhuiPresentFAO, 2000
-HebeiPresentFAO, 2000
-HeilongjiangPresentFAO, 2000
-HunanPresentFAO, 2000
-JilinPresentFAO, 2000
-LiaoningPresentFAO, 2000
-Nei MengguPresentFAO, 2000
-ShandongPresentFAO, 2000
ChinaPresentFAO, 2009Hempseed production (2008) 45,000 MT (F)
-AnhuiPresentFAO, 2000
-HebeiPresentFAO, 2000
-HeilongjiangPresentFAO, 2000
-HunanPresentFAO, 2000
-JilinPresentFAO, 2000
-LiaoningPresentFAO, 2000
-Nei MengguPresentFAO, 2000
-ShandongPresentFAO, 2000
JapanPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (F)
KazakhstanPresentFAO, 2000
Korea, DPRPresentFAO, 2000
Korea, Republic ofPresentFAO, 2009Hemp Tow Waste production (2008) 23 MT (F)
NepalPresentFAO, 2000
SyriaPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
TurkeyPresentFAO, 2009Hemp Tow Waste production (2008) 55 MT (F)
TurkeyPresentFAO, 2009Hempseed production (2008) 45 MT (F)

NORTH AMERICA

Canada
-AlbertaPresentHanks, 1999
-British ColumbiaPresentHanks, 1999
-ManitobaPresentHanks, 1999
-Nova ScotiaPresentHanks, 1999
-OntarioPresentHanks, 1999
-QuebecPresentHanks, 1999
-SaskatchewanPresentHanks, 1999
USA
-IllinoisPresentHanks, 1999
-IndianaPresentHanks, 1999
-IowaPresentHanks, 1999
-KentuckyPresentHanks, 1999
-MissouriPresentHanks, 1999
-WisconsinPresentHanks, 1999

SOUTH AMERICA

ChilePresentFAO, 2009Hemp Tow Waste production (2008) 4,385 MT (F)
ChilePresentFAO, 2009Hempseed production (2008) 1,300 MT (F)

EUROPE

AustriaPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
BelarusPresentKarus et al., 2000
BelgiumPresentKarus et al., 2000
BulgariaPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
BulgariaPresentFAO, 2009Hempseed production (2008) 0 MT (M)
CroatiaPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
CyprusPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (F)
CyprusPresentFAO, 2009Hempseed production (2008) 0 MT (F)
DenmarkPresentKarus et al., 2000
FrancePresentFAO, 2009Hemp Tow Waste production (2008) 7,100 MT (F)
FrancePresentFAO, 2009Hempseed production (2008) 5,500 MT (F)
GermanyPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
GermanyPresentFAO, 2009Hempseed production (2008) 0 MT (M)
HungaryPresentFAO, 2009Hemp Tow Waste production (2008) 500 MT (F)
HungaryPresentFAO, 2009Hempseed production (2008) 450 MT (F)
ItalyPresentFAO, 2009Hemp Tow Waste production (2008) 1,281 MT (F)
ItalyPresentFAO, 2009Hempseed production (2008) 0 MT (M)
NetherlandsPresentKarus et al., 2000
PolandPresentFAO, 2009Hemp Tow Waste production (2008) 50 MT (F)
PolandPresentFAO, 2009Hempseed production (2008) 20 MT (F)
PortugalPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
PortugalPresentFAO, 2009Hempseed production (2008) 0 MT (M)
RomaniaPresentFAO, 2009Hemp Tow Waste production (2008) 2,000 MT (F)
RomaniaPresentFAO, 2009Hempseed production (2008) 100 MT (F)
Russian FederationPresentFAO, 2009Hemp Tow Waste production (2008) 1,500 MT (F)
-Central RussiaPresentKarus et al., 2000; FAO, 2000
-Northern RussiaPresentKarus et al., 2000; FAO, 2000
-Southern RussiaPresentKarus et al., 2000; FAO, 2000
Russian FederationPresentFAO, 2009Hempseed production (2008) 331 MT
-Central RussiaPresentKarus et al., 2000; FAO, 2000
-Northern RussiaPresentKarus et al., 2000; FAO, 2000
-Southern RussiaPresentKarus et al., 2000; FAO, 2000
SpainPresentFAO, 2009Hemp Tow Waste production (2008) 15,000 MT (F)
SpainPresentFAO, 2009Hempseed production (2008) 8 MT (F)
SwedenPresentFAO, 2009Hemp Tow Waste production (2008) 0 MT (M)
UKPresentKarus et al., 2000; FAO, 2000
UkrainePresentFAO, 2009Hemp Tow Waste production (2008) 1,000 MT (F)
UkrainePresentFAO, 2009Hempseed production (2008) 600 MT (F)

Biology and Ecology

Top of pageC. sativa is an annual herb, and the seed germinates 3-7 days after absorbing water. Early vegetative growth is often slow, but later growth may be quite rapid. Generally, canopy closure (when leaves of adjacent plants mesh together and shade the soil) occurs when fibre crops are approximately 50 cm in height.

Duke (1985) determined that optimal growth of C. sativa occurs at 14.3°C. It has a growth period of 2-10 months, which is dependent on the latitude. C. sativa has an extensive root system, and is able to tolerate dry conditions, although it does not thrive. C. sativa also grows poorly in wetlands or saturated soil. Duke (1985) found that C. sativa has optimum growth in areas receiving an annual rainfall of 970 mm.

C. sativa grows well in bright sunlight. McPartland et al. (2000) describes good plant growth at 14,000-18,000 lx, or 215 W/m. It flowers in the autumn, when the photoperiod drops below 12-13 hours per day, depending on the variety and location. C. sativa tolerates UV radiation, and under high UV-B conditions the production of THC is enhanced (Lydon et al., 1987).

C. sativa grows from sea level to 3700 m in altitude, and from the equator to approximately 63° latitude (such as in Finland). Fibre hemp cultivars grow well at 40-55° latitude, and they perform poorly in semi-tropical and tropical latitudes. However, drug varieties were bred in semitropical and tropical locations, and have poor growth at high latitudes (above 45°), because frost often kills the plants before flowering.

C. sativa grows well in nutrient rich, well drained, well structured, silty loam soil with high organic matter. The plant is a nitrophile and requires much nutrients. Fibre crops require high levels of nitrogen and potassium, and in descending order of importance calcium, phosphorous and magnesium. However, seed crops extract less potassium and more phosphorous from the soil, and drug crops have a high demand for phosphorus (Frank and Rosenthal, 1978). Duke (1985) suggests that a soil pH of 6.5 is optimal.

Natural Enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Fusarium oxysporum f.sp. cannabisPathogen
Phomopsis cannabinaPathogen
Phomopsis ganjaePathogen

Uses

Top of pageFibre

The long, strong, mildew-resistant fibre in hemp was traditionally used for rope, sails, tarpaulin, canvas bags, and carpets. Fine yarn can be spun for clothing, handbags, and other textiles. The low lignin level present in hemp fibre and hurds make these materials ideal for production of paper, fibreboard, composite wood products; or may be mixed with lime to create reinforced concrete. The fibres also serve as a fibreglass substitute, for pressed insulation and moulded panels for the car industry.

Hempseed

The seed is technically an achene, a small, dry nut. C. sativa plants are prolific seeders; nearly half the weight of a well-pollinated female turns to seed. For example field-grown crops yield an average of 400 g seeds per plant, or about 22,000 seeds per plant (McPartland et al., 2000).

Approximately one-third of hempseed is oil, which is used in lighting, lubrication, soaps, detergents and cosmetic creams. The fatty acids are quick drying and so hemp oil is useful for paints, varnishes and printing inks. Hemp oil can also be burned as a fuel.

In China, hempseed is commonly eaten, roasted or raw. 100 g of seed contains 503 calories, 23 g of protein, 35 g of carbohydrate (including about 20 g of fibre), and 30 g of oil (Wirtshafter, 1997). The primary hempseed protein, edestin, is easily digested and contains all eight essential amino acids (Pate, 1999). The oil is 80% polyunsaturated, 10% monosaturated, and 10% saturated (Pate, 1999). Hemp oil contains a high percentage of essential fatty acids, such as gamma-linolenic acid, stearidonic acid (omega-6 fatty acids) and linoleic acid (omega-3 fatty acid). The omega-6 and omega-3 fatty acids are present in a 3:1 ratio, which is considered optimal for human nutrition (Pate, 1999). It is therefore a valuable food supplement, and is useful in salad dressings and margarine. After the oil has been pressed out of the seed, the remaining seed cake is rich in protein and is suitable for use as a flour or an animal feed.

Drug

Tetrahydrocannabinol (THC) is the primary active ingredient in the drug cannabis, but THC activity is modulated by dozens of other cannabinoids, terpenoids, and flavonoids. These compounds are synthesized in specialized leaf hairs called glandular trichomes, which are most dense on the surface of the leafy female flowers. The upper head of the glands consists of secretory cells and is covered by a tough but distensible sheath. Secretion of cannabinoids, terpenoids, and flavonoids swell the sheath into a spherical head up to 120 µm in diameter.

Air-dried herbal products (such as marijuana, sinsemilla) dominate the illicit market in North America, South America, and South Africa. Hashish dominates the market in Western Europe; the source is primarily Morocco (some 400 tonnes annually), and Pakistan and Afghanistan (260 tonnes), according to the UNDCP (1997). Hash oil maintains niche markets in Canada, Nepal, western Europe and Oceania (ODCCP, 2000).

For legitimate medicinal use, clinical trials have demonstrated the efficacy of the drug cannabis for treating many diseases and syndromes, including arthritis, muscle spasms, headaches, menstruation, multiple sclerosis, epilepsy, anorexia, glaucoma, insomnia, anxiety, depression and even drug addiction.

C. sativa has been used in traditional medicine in Tibet, and also in Ayurveda medication. In Western medicine, the use of C. sativa began with O'Shaughnessy's research published in the 1830s, and terminated with the USA Marihuana Tax Act of 1937. In the past ten years, however, the drug has been re-introduced. Synthetic forms of THC are widely prescribed, and several pharmaceutical companies are currently developing cannabis plant extracts.

The essential oil (which contains no THC) can be used in cosmetics, perfumes, food additives, and it may be fractionated for pharmaceutical use. The oil has antibacterial, antifungal and pest-repellent properties, and is being developed as an organic pesticide (McPartland, 1997).

Uses List

Top of page

Animal feed, fodder, forage

  • Fodder/animal feed

Drugs, stimulants, social uses

  • Miscellaneous drugs, stimulants and social uses

Materials

  • Essential oils
  • Fibre

Medicinal, pharmaceutical

  • Source of medicine/pharmaceutical

References

Top of page

Able E, 1980. Marijuana: The First 12,000 Years. NY, USA: Plenum Press.

B=csa I, Karus M, 1997. Der Hanfanbau: Botanik, Sorten, Anbau und Ernte. Mnller Verlag, Heildelberg. 173 pp. [The Cultivation of Hemp: Botany, Varieties, Cultivation and Harvesting, 1998]. Hemptech, Sebastopol, CA.

Canapasemi G, 1988. Hemp fiber cultivation. Sinsemilla Tips, 8(3):49-57.

Clarke RC, 1998. Hashish! Los Angeles,USA: Red Eye Press.

de Meijer EPM, 1999. Cannabis germplasm resources. In: Ranalli P, ed. Advances in Hemp Research. NY, USA: Haworth Press, 133-151.

DEA, 1998. Domestic Cannabis Eradication/Suppression Program, 1997. Washington, DC, USA: Drug Enforcement Administration.

Dempsey JM, 1975. Hemp. In: Fiber Crops. Gainesville, FL, USA: University of Florida Press.

Duke JA, 1985. CRC Handbook of Medicinal Herbs. Boca Raton, FL, USA: CRC Press.

FAO, 2000. Food and Agriculture Organization of the United Nations, Yearbook. Production. <http://apps.fao.org/default.html>.

Frank M, Rosenthal E, 1978. Marijuana Grower's Guide. Berkeley, CA, USA: And/Or Press.

Gettman J, Armentano P, 1998. The 1998 marijuana crop report. National Organization for the Reform of Marijuana Laws, <http://www.norml.org/home.html>.

Hanks J, 1999. Year end special. Hemp Commerce & Farming Report Vol 1, Issue 7 <http://www.hemphasis.com/>.

Herodotus, 1906. Herodotus IV (Melpomene). Reprint. Cambridge, UK: University Press.

Karus M, Kaup M, 1999. Use of natural fibres in the German automotive industry. J. International Hemp Association, 6(2):72-75.

Karus M, Kaup M, Lohmeyer D, 2000. Study on markets and prices for natural fibres. Nova Institute Report for Bioresource Hemp Conference. <http://www.bioresource-hemp.de/>.

Lydon J, Teramura AH, Coffman CB, 1987. UV-B radiation effects on photosynthesis, growth and cannabinoid production of two Cannabis sativa chemotypes. Photochemistry & Photobiology, 46(2):201-206.

McPartland JM, 1997. Cannabis as a repellent crop and botanical pesticide. J. International Hemp Association, 4(2):89-94.

McPartland JM, Clarke RC, Watson DP, 2000. Hemp Diseases and Pests: Management and Biological Control. Wallingford, UK: CABI Publishing.

Meier C, Mediavilla V, 1998. Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. J. International Hemp Association, 5(1):16-20.

Mignoni G, 1997. Cannabis as a licit crop: recent developments in Europe. Bulletin on Narcotics, 49(1-2):23-43. <http://www.undcp.org/index.html>.

ODCCP, 2000. Global Illicit Drug Trends 2000. Office for Drug Control and Crime Prevention, United Nations, New York, 219 pp. <http://www.undcp.org/index.html>.

Pate DW, 1999. Hemp seed: a valuable food source. In: Ranalli P, ed. Advances in Hemp Research. NY, USA: Haworth Press, 243-255.

Schultes RE, Klein WM, Plowman T, Lockwood TE, 1974. Cannabis: an example of taxonomic neglect. Bot. Mus. Leaflet. Harv. Univ., 23:337-367.

Small E, Cronquist A, 1976. A practical and natural taxonomy for Cannabis. Taxon, 25:405-435.

Stockberger WW, 1915. Drug plants under cultivation. USDA Farmer's Bulletin No. 663. Washington, D.C.: USDA.

Szendrei K, 1997. Cannabis as an illicit crop: recent developments in cultivation and production quality. Bulletin on Narcotics, 49(1-2):1-21. <http://www.undcp.org/index.html>.

UNDCP, 1997. Cannabis as an illicit narcotic crop: a review of the global situation of cannabis consuption, trafficking and production. Bulletin on Narcotics, 49(1-2):43-83. <http://www.undcp.org/index.html>.

Wirstshafter D, 1997. Nutritional value of hemp seed and hemp seed oil. In: Mathre ML, ed. Cannabis in Medical Practice. NC, USA: McFarland & Co., Jefferson, 181-191.

Wolf B, 1999. The Fertile Triangle: The Interrelationship of Air, Water, and Nutrients in Maximizing Soil Productivity. New York, USA: Haworth Press.

Distribution Maps

Top of page
Distribution map Austria: Present
FAO, 2009Belgium: Present
Karus et al., 2000Bulgaria: Present
FAO, 2009Belarus: Present
Karus et al., 2000Canada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryCanada
See regional map for distribution within the countryChile: Present
FAO, 2009China: Present
FAO, 2009China: Present
FAO, 2009China
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryChina
See regional map for distribution within the countryCyprus: Present
FAO, 2009Cyprus: Present
FAO, 2009Germany: Present
FAO, 2009Denmark: Present
Karus et al., 2000Spain: Present
FAO, 2009Spain: Present
FAO, 2009France: Present
FAO, 2009UK: Present
Karus et al., 2000; FAO, 2000Croatia: Present
FAO, 2009Hungary: Present
FAO, 2009Italy: Present
FAO, 2009Japan: Present
FAO, 2009Korea, DPR: Present
FAO, 2000Korea, Republic of: Present
FAO, 2009Kazakhstan: Present
FAO, 2000Kazakhstan: Present
FAO, 2000Netherlands: Present
Karus et al., 2000Nepal: Present
FAO, 2000Poland: Present
FAO, 2009Portugal: Present
FAO, 2009Romania: Present
FAO, 2009Russian Federation: Present
FAO, 2009Russian Federation: Present
FAO, 2009Russian Federation
See regional map for distribution within the countryRussian Federation
See regional map for distribution within the countryRussian Federation
See regional map for distribution within the countrySweden: Present
FAO, 2009Syria: Present
FAO, 2009Syria: Present
FAO, 2009Syria: Present
FAO, 2009Turkey: Present
FAO, 2009Turkey: Present
FAO, 2009Turkey: Present
FAO, 2009Ukraine: Present
FAO, 2009Ukraine: Present
FAO, 2009USA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the countryUSA
See regional map for distribution within the country
  • = Present, no further details
  • = Evidence of pathogen
  • = Widespread
  • = Last reported
  • = Localised
  • = Presence unconfirmed
  • = Confined and subject to quarantine
  • = See regional map for distribution within the country
  • = Occasional or few reports
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Distribution map (asia) China: Present
FAO, 2009Anhui: Present
FAO, 2000Hebei: Present
FAO, 2000Heilongjiang: Present
FAO, 2000Hunan: Present
FAO, 2000Jilin: Present
FAO, 2000Liaoning: Present
FAO, 2000Nei Menggu: Present
FAO, 2000Shandong: Present
FAO, 2000Japan: Present
FAO, 2009Korea, DPR: Present
FAO, 2000Korea, Republic of: Present
FAO, 2009Kazakhstan: Present
FAO, 2000Nepal: Present
FAO, 2000Russian Federation: Present
FAO, 2009Syria: Present
FAO, 2009Turkey: Present
FAO, 2009Ukraine: Present
FAO, 2009
Distribution map (europe) Austria: Present
FAO, 2009Belgium: Present
Karus et al., 2000Bulgaria: Present
FAO, 2009Belarus: Present
Karus et al., 2000Cyprus: Present
FAO, 2009Germany: Present
FAO, 2009Denmark: Present
Karus et al., 2000Spain: Present
FAO, 2009France: Present
FAO, 2009UK: Present
Karus et al., 2000; FAO, 2000Croatia: Present
FAO, 2009Hungary: Present
FAO, 2009Italy: Present
FAO, 2009Kazakhstan: Present
FAO, 2000Netherlands: Present
Karus et al., 2000Poland: Present
FAO, 2009Portugal: Present
FAO, 2009Romania: Present
FAO, 2009Russian Federation: Present
FAO, 2009Central Russia: Present
Karus et al., 2000; FAO, 2000Northern Russia: Present
Karus et al., 2000; FAO, 2000Southern Russia: Present
Karus et al., 2000; FAO, 2000Sweden: Present
FAO, 2009Syria: Present
FAO, 2009Turkey: Present
FAO, 2009Ukraine: Present
FAO, 2009
Distribution map (africa) Cyprus: Present
FAO, 2009Spain: Present
FAO, 2009Syria: Present
FAO, 2009Turkey: Present
FAO, 2009
Distribution map (north america) Alberta: Present
Hanks, 1999British Columbia: Present
Hanks, 1999Manitoba: Present
Hanks, 1999Nova Scotia: Present
Hanks, 1999Ontario: Present
Hanks, 1999Quebec: Present
Hanks, 1999Saskatchewan: Present
Hanks, 1999Iowa: Present
Hanks, 1999Illinois: Present
Hanks, 1999Indiana: Present
Hanks, 1999Kentucky: Present
Hanks, 1999Missouri: Present
Hanks, 1999Wisconsin: Present
Hanks, 1999
Distribution map (central america)
Distribution map (south america) Chile: Present
FAO, 2009
Distribution map (pacific) China: Present
FAO, 2009